благодаря симбиозу клубеньковых бактерий и бобовых растений почва обогащается чем
Благодаря симбиозу клубеньковых бактерий и бобовых растений почва обогащается чем
Корни многих бобовых несут небольшие клубеньки, образованные разрастающейся тканью при внедрении в корень азотфиксирующих бактерий. Эти бактерии способны фиксировать атмосферный азот, которым они не только снабжают растение, но и обогащают им почву.
Бактерии формируют на корнях бобовых растений клубеньки, в которых образуют азот и превращают его в азотистые соединения, пригодные для усвоения растениями. Таким образом, почва с помощью этих растений обогащается азотом.
Собственно растения не обогащают почву. Их заслуга в том, что с ними вступают в симбиоз клубеньковые бактерии. Так что верный ответ 4.
. Ежегодно бобовые, живущие в симбиозе с бактериями, возвращают в почву не менее 100 — 140 кг/га азота.
Следовательно, это роль клубеньковых бактерий. а не совсем бобовых растений.Двойственный ответ.
Зеленые растения обогащают почву не только органикой, но и азотом, микроэлементами и по эффективности приравниваются к навозу. Корни рыхлят землю, улучшают структуру, водный и воздушный режим, оздоравливают ее.
К сидератам относятся в основном бобовые культуры: люпин, чина, донник, лядвенец, вика, сераделла, люцерна, клевер и др. Бактерии формируют на корнях бобовых растений клубеньки, в которых образуют азот и превращают его в азотистые соединения, пригодные для усвоения растениями. Таким образом почва с помощью этих растений обогащается азотом.
Благодаря симбиозу клубеньковых бактерий и бобовых растений почва обогащается чем
Корни многих бобовых несут небольшие клубеньки, образованные разрастающейся тканью при внедрении в корень азотфиксирующих бактерий. Эти бактерии способны фиксировать атмосферный азот, которым они не только снабжают растение, но и обогащают им почву.
Бактерии формируют на корнях бобовых растений клубеньки, в которых образуют азот и превращают его в азотистые соединения, пригодные для усвоения растениями. Таким образом, почва с помощью этих растений обогащается азотом.
Собственно растения не обогащают почву. Их заслуга в том, что с ними вступают в симбиоз клубеньковые бактерии. Так что верный ответ 4.
. Ежегодно бобовые, живущие в симбиозе с бактериями, возвращают в почву не менее 100 — 140 кг/га азота.
Следовательно, это роль клубеньковых бактерий. а не совсем бобовых растений.Двойственный ответ.
Зеленые растения обогащают почву не только органикой, но и азотом, микроэлементами и по эффективности приравниваются к навозу. Корни рыхлят землю, улучшают структуру, водный и воздушный режим, оздоравливают ее.
К сидератам относятся в основном бобовые культуры: люпин, чина, донник, лядвенец, вика, сераделла, люцерна, клевер и др. Бактерии формируют на корнях бобовых растений клубеньки, в которых образуют азот и превращают его в азотистые соединения, пригодные для усвоения растениями. Таким образом почва с помощью этих растений обогащается азотом.
Симбиоз клубеньковых бактерий и бобовых растений
Из 13 000 видов (550 родов) бобовых растений клубеньки выявлены пока только у 1300 видов (243 рода). Из этих растений более 200 видов — сельскохозяйственные растения. Благодаря клубенькам бобовые растения приобретают способность усваивать атмосферный азот.
Бактерии, вызывающие образование клубеньков у бобовых (клубеньковые бактерии), принадлежат к роду ризобиум. Эти бактерии свободно живут в почве, но фиксацию молекулярного азота способны осуществлять лишь в симбиозе с растением. Комплекс растение — ризобиум является примером настоящего симбиоза.
Растение обеспечивает бактерии питательными веществами и создает для них оптимальные условия существования, а бактерии снабжают растение азотом. Растение реагирует на бактерии уродливым разрастанием ткани, а в случае недостатка некоторых элементов питания (например, бора) бактерия может стать настоящим паразитом растение. В условиях обильного снабжения углеводами клубеньковая бактерия интенсивно фиксирует азот атмосферы.
Для клубеньковых бактерий характерно поразительное разнообразие форм — полиморфность. Они могут быть палочковидными, овальными, в форме кокков (подвижных и неподвижных). Клубеньковые бактерии — микроаэрофилы (развиваются при незначительном количестве кислорода в среде), однако предпочитают аэробные условия. В качестве источников углерода в питательных средах используют углеводы и органические кислоты, источников азота— разнообразные минеральные и органические азотосодержащие соединения. Клубеньковые бактерии обладают строгой специфичностью.
Существует несколько гипотез о проникновении клубеньковых бактерий в ткани корня: 1) через повреждения эпидермальной и коровой ткани; 2) через корневые волоски; 3) только через молодую клеточную оболочку; 4) благодаря стимуляции синтеза β-индолилуксусной кислоты из триптофана, всегда имеющегося в корневых выделениях растений; 5) благодаря бактериям-спутникам, продуцирующим пектинолитические ферменты.
Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз: 1) инфицирование корневых волосков; 2) процесс образования клубеньков.
В большинстве случаев внедрившаяся клетка, активно размножаясь, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина. Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудисто-волокнистым пучкам. В период функционирования клубеньки обычно плотные; К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.
Факторы, определяющие симбиотические взаимоотношения клубеньковых бактерий с бобовыми растениями:
1. Влажность — оптимальная влажность 60—70 % полной влагоемкости почвы.
2. Температура — температурные характеристики разных видов бобовых растений различны; предел — от 10 до 25—30 °С. Максимальная азотфиксация у ряда бобовых растений наблюдается при 20—25 °С.
3. Реакция почвы — нейтральные значения рН.
4. Степень обеспеченности бобовых растений доступными формами минеральных соединений азота, фосфора, калия, кальция, магния, серы, железа, микроэлементов.
5. Биологические факторы — ризосферная микрофлора, насекомые.
Корневые клубеньки распространены не только у бобовых растений. Имеется около 200 видов различных растений, связывающих азот в симбиозе с микроорганизмами, образующими клубеньки на их корнях (или листьях). Изучены клубеньки на корнях ольхи, якорцев (из семейства парнолистниковых), вейника лесного. Обнаружены клубеньки на корнях капусты, редьки (семейство крестоцветных). Клубеньки на листьях образуют бактерии филлосферы, которые также участвуют в азотном питании растений.
Нитрагин — бактериальное удобрение, состоящее из нескольких штаммов клубеньковых бактерий.
Богданова, Т.Л. Справочник по биологии/ Т.Л. Богданова [и д.р.]. – К.: Наукова думка, 1985.- 585 с.
Симбиоз клубеньковых бактерий и бобовых растений: особенности и видовая специфика клубеньковых бактерий и их взаимодействие с растениями-хозяевами
Симбиоз клубеньковых бактерий и бобовых растений
Особенности клубеньковых бактерий
Клубеньковые бактерии впервые были обнаружены в 1888 году ученым М. Бейеринком. Он выделил азотфиксирующие симбиотические микроорганизмы из корневых клубеньков бобовых растений. Особенность этих бактерий в том, что они благоприятствуют формированию клубеньков, в которых фиксируется атмосферный азот.
Это взаимовыгодный союз, так как бактерии потребляют органические соединения в клубеньках, а растению доступны связанные соединения азота. Эти взаимоотношения называются симбиотическими.
Все клубеньковые бактерии, которые поражают корневую систему бобовых различаются. При этом, они рассматриваются как родственные.
Клубеньковые бактерии характеризуются:
Клубеньковые бактерии питаются:
Отдельные виды бактерий при усвоении углеводов могут образовывать кислоты.
Микроорганизмы часто сами синтезируют некоторые витамины, такие как тиамин, рибофлавин и цианокобаламин, а также вещества роста — гетероауксин, гиббереллины, цитокинины.
Видовая специфика клубеньковых бактерий
Клубеньковые бактерии формируют симбиотические связи с растениями, принадлежащими семейству Leguminosae.
Клубеньковые бактерии отличаются видовой спецификой в зависимости от того, кто является их растением-хозяином. Отдельный вид бактерий образует клубеньки на одном или нескольких видах бобовых растений:
Специфичность клубеньковых бактерий — явление не до конца изученное. Многие считают, что бактерии начинают взаимодействовать с корневой системой растения в результате привлечения клеток микроорганизмов при помощи корневых выделений.
Подвижные бактерии, характеризующиеся хемотаксисом, заражают растения быстрее.
Растения преимущественно заражаются через молодые корневые волоски.
В бобовых растениях содержатся белки или гликопротеины (лектины), которые специфичным образом связывают полисахариды. Последние выполняют функцию распознавания.
С помощью взаимодействия поверхностных полисахаридов бактерий и лектинов корней бобового растения можно определить, может ли произойти инфицирование корневого волоска этим видом клубеньковых бактерий.
Как взаимодействуют бактерии и растения-хозяева
Клубеньковые бактерии проникают в корневые волоски бобовых растений разными способами:
Понять, что растение инфицировано, можно по специфическим изменениям формы корневых волосков: их изгиб похож на форму ручки зонтика.
То, насколько корневой волосок искривляется, зависит от:
Место проникновения бактерий характеризуется разрыхлением клеточной стенки волоска, которое происходит под действием гидролитических ферментов бактерий.
Бактерии формируют инфекционную нить: это гифообразная слизистая масса. Движение нити происходит в направлении клеток эпидермиса и основания волоска, а далее — в паренхиму через клетки коры.
Внедрившись в клетки растений, инфекционная нить покрывается целлюлозной оболочкой.
Бактерии могут размножаться исключительно в тетраплоидных клетках коры. За редким исключением — в клетках эпидермиса корня.
Происходит интенсивное деление инфицированной клетки и незараженных клеток. Как результат — образуется клубенек.
Симбиоз
Роль клубеньковых бактерий в природе
Помимо фиксации атмосферного азота роль клубеньковых бактерий в природе очень велика. В процессе размножения они «занимаются» синтезом витаминов, природных антибиотиков, способствуют развитию сначала корня, а затем и ботвы. Польза заключается в том, что почвенные бактерии азотфиксирующего типа за счет симбиоза с растениями:
Бобовые растения и клубеньковые бактерии
Как взаимодействуют бобовые растения и клубеньковые бактерии? После заражения растения продуценты усваивают азот из воздуха, преобразуя его в соединение, пригодное для питания не только паразита, но и для «хозяина». Есть несколько теорий о том, как отдельные элементы образуют бактериальные клубеньки. Происходит заражение растений:
Симбиотические бактерии рода Ризобиум, проникнув в корень, перемещаются в его ткани, легко преодолевая межклеточное пространство группами или одиночными клетками (как у люпина). Чаще же клетка при размножении образовывают инфекционные нити (тяжи, колонии). Их количество различается по типам растений. Часто встречаются общие нити заражения, формирующие один клубенек.
Выбор языка сайта
Afrikaans Albanian Amharic Arabic Armenian Azerbaijani Basque Belarusian Bengali Bosnian Bulgarian Catalan Cebuano Chichewa Chinese (Simplified) Chinese (Traditional) Corsican Croatian Czech Danish Dutch English Esperanto Estonian Filipino Finnish French Frisian Galician Georgian German Greek Gujarati Haitian Creole Hausa Hawaiian Hebrew Hindi Hmong Hungarian Icelandic Igbo Indonesian Irish Italian Japanese Javanese Kannada Kazakh Khmer Korean Kurdish (Kurmanji) Kyrgyz Lao Latin Latvian Lithuanian Luxembourgish Macedonian Malagasy Malay Malayalam Maltese Maori Marathi Mongolian Myanmar (Burmese) Nepali Norwegian Pashto Persian Polish Portuguese Punjabi Romanian Russian Samoan Scottish Gaelic Serbian Sesotho Shona Sindhi Sinhala Slovak Slovenian Somali Spanish Sudanese Swahili Swedish Tajik Tamil Thai Turkish Ukrainian Urdu Uzbek Vietnamese Welsh Xhosa Yiddish
Пути проникновения бактерий в корень
Существует несколько способов внедрения бактериальных клеток в ткани корневой системы. Это может произойти вследствие повреждения покровных тканей или в местах, где клетки корня молодые. Зона корневых волосков также является путем проникновения хемотрофов внутрь растения. Далее корневые волоски инфицируются и в результате активного деления бактериальных клеток образуются клубеньки. Внедрившиеся клетки образуют инфекционные нити, которые продолжают процесс проникновения в растительные ткани. С помощью проводящей системы бактериальные клубеньки связаны с корнем. С течением времени в них появляется особое вещество — легоглобин.
К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.
Взаимодействие с человеком
Человек постоянно живет в содружестве с многочисленным бактериальным сообществом, представленным нескольким десятком основных семейств. Отсутствуют микробы только в крови и лимфе. Все остальные органы и ткани, так или иначе, вступают в контакт либо с самими бактериями, либо с продуктами их жизнедеятельности.
Желудочно-кишечный тракт
ЖКТ населен симбионтами семейства Энтеробактерии (Enterobacteriaceae). Это самое многочисленное сообщество, которое включает в себя роды кишечных патогенных и условно патогенных микроорганизмов. Также в ЖКТ имеется большое количество представителей семейства Лактобацилл (Lactobacillus) – эти микроорганизмы создают кислотную среду, которая подавляет деятельность бактериальных и вирусных патогенов; также лактобактерии очищают кишечник от гнили.
Кожные покровы
Кожа человека населена микроорганизмами в не меньшей степени, нежели ЖКТ. На коже присутствуют стафилококки эпидермидис, коринеформные бактерии, протеи, пропионибактерии, псевдомонады, кишечные микробы и другие.
Бактерии на коже человека
Активность микробов, которые населяют кожу, зависит от наличия многих подавляющих факторов, а также факторов, которые стимулируют развитие благоприятной среды для роста определенного вида бактерий. Как только такая среда создается, сразу в этом бактериальном сообществе начинает преобладать определенная бактериальная форма, что чаще всего сопровождается инфицированием кожных покровов. При нормальных условиях, когда одна группа сдерживает другую, подобное взаимодействие является естественным биологическим щитом.
Ротовая полость
Во рту также установлено наличие бактериального симбиоза, который регулирует внутреннюю среду ротовой полости и не дает возможности активизироваться патогенной микрофлоре, тем самым защищая ткани самой ротовой полости и верхних дыхательных путей от инфекционных заражений.
Процессы жизнедеятельности
Все азотфиксирующие бактерии по особенностям процессов жизнедеятельности можно объединить в две группы. Первая группа является нитрифицирующей. Суть обмена веществ в этом случае заключается в цепочке химических превращений. Аммоний, или аммиак, превращается в нитриты — соли азотной кислоты. Нитриты, в свою очередь, превращаются в нитраты, тоже являющиеся солями этого соединения. В виде нитратов азот лучше усваивается корневой системой растений.
Вторая группа называется денитрификаторами. Они осуществляют обратный процесс: нитраты, содержащиеся в почве, превращают в газообразный азот. Таким образом происходит круговорот азота в природе.
К процессам жизнедеятельности также относят и процесс размножения. Происходит он путем деления клеток надвое. Гораздо реже — путем почкования. Характерен для бактерий и половой процесс, который называется конъюгация. При этом происходит обмен генетической информацией.
Поскольку корневая система выделяет много ценных веществ, бактерий на ней поселяется очень много. Они преобразуют растительные остатки в вещества, которые способны впитать растения. В результате слой почвы вокруг приобретает определенные свойства. Его называют ризосферой.
Желательно и обязательно
Отношения, при которых растительные организмы получают обоюдную выгоду, можно отнести к мутуалистическим (мутуализм – от лат. mutuus – «взаимный»). Обычно разделяют факультативный и облигатный (от лат. obligatus – «непременный», «обязательный») мутуализм.
Если при этом сосуществующие партнеры неразделимы и зависят друг от друга, то подобные связи называют симбиотическими (симбиоз – от греч. symbiosis – «совместная жизнь»).
Что такое клубеньковые бактерии
Больше 2 тыс. лет назад земледельцы заметили, что бедные, выработавшие ресурс почвы дают урожаи после возделывания на них бобовых культур. Следующие попытки раскрыть секрет были в 1838 г.: Ж.-Б. Буссенго решил, что листья бобовых фиксируют азот, однако опыты с неблагоприятной водной средой не подтвердили это. В 1901 г. была открыта Azotobacter chroococcum (6 видов из рода азотобактер). Первый препарат на основе «земляных» бактерий Нитрагин был создан в 1897-м.
Все клубеньковые бактерии – это микроаэрофилы. Им свойственна палочковидная/овальная форма. Относятся Rhizobium (Rhizobiales) к способным переводить газообразную форму азота в усвояемую растениями – растворимую. Факты:
Значение хемотрофов
Люди давно заметили, что, если перекопать бобовые растения с почвой, урожай на этом месте будет лучше. На самом деле суть не в процессе вспахивания. Такая почва больше обогащается азотом, столь необходимым для роста и развития растений.
Если лист называют фабрикой по производству кислорода, то азотфиксирующие бактерии могут по праву называться фабрикой по производству нитратов.
Еще в 19 веке ученые обратили внимание на удивительные способности бобовых растений. Из-за недостатка знаний их приписывали только растениям и не связывали с другими организмами
Было высказано предположение, что листья могут фиксировать атмосферный азот. В ходе экспериментов было выяснено, что бобовые, которые выросли в воде, такую способность утрачивают. Более 15 лет этот вопрос оставался загадкой. Никто не догадывался, что осуществляют все это азотфиксирующие бактерии, среда обитания которых не была изучена. Оказалось, что дело в симбиозе организмов. Только вместе бобовые и бактерии могут производить нитраты для растений.
Сейчас ученые выявили более 200 растений, которые не относятся к семейству бобовых, но способны образовать симбиоз с азотфиксирующими бактериями. Картофель, сорго, пшеница также обладают ценными свойствами.
Совместная жизнь
Еще один классический пример тесных мутуалистических отношений в фитоценозе – симбиоз растений (например, бобовых и мимозовых – около 90 % изученных видов) с азотфиксирующими бактериями, способными усваивать атмосферный азот и переводить его в доступную для высших растений форму. Колонии бактерий поселяются на корневых волосках растения-хозяина, вызывая разрастание тканей корня с образованием утолщений – клубеньков. В результате такого «сожительства» бактериям достаются растительные ассимиляты, а к растениям поступает фиксированный азот (чаще всего в виде аспарагина).
Аналогичные симбиотические связи с корнями различных деревьев и кустарников образуют актиномицеты. Симбиоз с азотфиксирующими микроорганизмами дает возможность растениям-партнерам успешно расти в условиях азотного дефицита (например, на торфяниках или песчаных участках).
Срастание корней дает деревьям возможность обмениваться между собой влагой, минеральными и органическими веществами
Часто у близко растущих деревьев (одного вида или близкородственных) наблюдают срастание корней, что дает им возможность обмениваться между собой влагой, минеральными и органическими веществами. Такой своеобразный симбиоз делает их более устойчивыми к засухе, морозу, повреждению насекомыми и т. д.
При отмирании надземных частей у отдельных деревьев их сохранившаяся корневая система используется соседними, что улучшает рост и устойчивость всей группы в целом. После вырубок в таких случаях могут образовываться «живые» пни, у которых длительное время сохраняется камбиальный прирост.
Существенный минус корневого срастания – возможность более легкого распространения токсинов и возбудителей вирусных и грибных заболеваний. Однако для сближенных деревьев такое взаимоинфицирование в любом случае может происходить достаточно быстро.
Срастание корневых систем выявлено у деревьев разных возрастов, причем у представителей как голосеменных, так и покрытосеменных. Наиболее часто это явление отмечают для березы повислой, ясеня зеленого, дуба черешчатого, вяза обыкновенного, клена остролистного, различных хвойных – сосны, ели, лиственницы, пихты. Корневое срастание характерно также для плодовых (груши, яблони, сливы, рябины). Садоводы создают искусственные системы «многокорневых» деревьев за счет прививок корней для улучшения роста и повышения урожайности.
Типы мутуализма
Мутуалистические отношения могут быть классифицированы как обязательные или факультативные. При обязательной взаимности выживание одного или обоих вовлеченных организмов зависит от этих отношений. При факультативной взаимности оба организма получают выгоду, но не зависят от отношений для выживания.
Ряд примеров взаимности можно наблюдать между различными организмами (бактериями, грибами, водорослями, растениями и животными) в различных биомах. Общие взаимные отношения происходят между организмами, когда один организм получает питание, в то время как другой получает определенный вид обслуживания. Другие взаимные отношения многогранны и включают в себя сочетание нескольких преимуществ для обоих видов. В то же время некоторые взаимоисключающие отношения связаны с одним видом, живущим внутри другого вида. Ниже приведены примеры взаимных отношений.
Классификация
Размеры бактерий можно сопоставить с величиной частичек глины. В чайной ложке почвы можно обнаружить от ста миллионов до миллиарда различных микроорганизмов, основным местом жительства которых являются тонкие пленки, обволакивающие почвенные частицы и корни растений. Простота строения позволила ученым назвать эти бактерии «мешком ферментов».
Существующие классификации основаны на характерных особенностях этих микроорганизмов – их форме, поведении при окрашивании препаратов, способу питания, а также генетическом родстве.
Форма клеток
Такое примитивное деление было разработано тогда, когда о генетическом анализе никто даже не догадывался. Различают микроорганизмы округлой формы (кокки), продолговатые или стержневые (их называют бациллами), спиральные (спириллы) и имеющие разветвленную структуру (актиномицеты). Кроме того, существуют промежуточные формы, или агрегаты, состоящие из пар, цепочек или гроздьев.
Поведение при окраске по Граму
Было разработано после начала изучения бактерий при помощи их окрашенных препаратов. Грамположительные организмы имеют большие размеры, толстые клеточные стенки и высокую устойчивость к водному стрессу. Их внешняя стенка несет отрицательный электрический заряд. Грамотрицательные же мельче, и быстрее гибнут при отсутствии воды.
Аэробные и анаэробные
Первые не могут жить без кислорода, вторые же отлично обходятся без него, перерабатывая, например, соединения серы или углеводороды.
Аутотрофы и гетеротрофы
Первые способны самостоятельно перерабатывать углекислый газ, превращая его в необходимые для них органические вещества с использованием солнечного света. Ко вторым относятся те, что получают питание, разлагая готовую органику.
Характеристики
Кораллы Было обнаружено, что образуют характерные ассоциации с симбиотических азотфиксирующих бактерий. Кораллы развивались в олиготрофных водах, которые, как правило, бедны азотом. Поэтому кораллы должны образовывать мутуалистических отношения с фиксирующим азота организма, в данном случае предметом данного исследования, а именно Symbiodinium. В дополнении к этому фитопланктону динофлагеллату, кораллы также образуют отношения с бактериями, Archae и грибами. Проблема заключается в том, что эти динофлагеллятах также азот ограничены и должны образовывать симбиотические отношения с другим организмом; здесь предлагается быть диазотрофы. Кроме того, цианобактерии были обнаружены, что обладают генами, которые позволяют им пройти фиксацию азота. Данное исследование идет дальше, чтобы исследовать возможность того, что в дополнении к названному фитопланктону динофлагеллату и некоторым цианобактерий, эндосимбиотическим водорослям и кораллам содержат ферменты, позволяющие им и претерпевать ассимиляции аммония.
Из-за небольшого размера генома большинства эндосимбионтов, они не могут существовать в течение длительного времени вне клетки-хозяина, тем самым предотвращая долгосрочные симбиотических отношений. Однако, в случае endonuclear симбиотических бактерий Holospora, было обнаружено, что виды Holospora могут сохранять свою инфекционность в течение ограниченного времени и образуют симбиотические отношения с видами Paramecium.
Организмы, как правило, устанавливают симбиотические отношения из-за их ограниченную доступность ресурсов в их среде обитания или в связи с ограничением их источник пищи. Триатомовые клопы векторы имеют только один хост и, следовательно, должны установить связь с бактериями, чтобы дать им возможность получить питательные вещества, необходимые для поддержания себя.
Фиксация азота: разнообразие форм
Азотфиксирующие бактерии выполняют огромную работу, помогая растениям усваивать атмосферный азот. Их работа на несколько порядков производительнее всех фабрик по производству минеральных удобрений, вместе взятых.
К числу таких азотфиксирующих бактерий относятся клубеньковые симбиотические, поселяющиеся на корнях растений семейства бобовых, и свободноживущие нитрифицирующие. Особняком держатся микроорганизмы-денитрификаторы.
Азотфиксирующие бактерии встречаются среди различных родов прокариот (Клостридиум, Азотобактер, Азоспириллум, Псевдомонас, Ацетобактер, Агробактериум, Эрвиния, Клебсиелла, Бациллюс, Алкалигенес), а также среди сине-зеленых водорослей.
Многие из этих азотфиксирующих бактерий длительное время считались свободноживущими, пока не было обнаружено, что их количество в прикорневой зоне злаковых растений существенно превышает обычную численность в земле без растений. Доказан факт их функциональных и пространственных связей с корнями растений, что делает эти микроорганизмы похожими на клубеньковые бактерии, являющиеся признанными симбионтами растений.
Кто такие бактерии?
Представители этого царства живой природы представляют собой единственную группу прокариот — организмов, клетки которых лишены ядра. Но это не значит, что они совсем не содержат наследственной информации. Молекулы ДНК свободно находятся в цитоплазме клетки и не окружены оболочкой.
Поскольку размеры их микроскопические — до 20 мкм, бактерии изучает наука микробиология. Ученые выяснили, что прокариоты могут быть одноклеточными или объединяться в колонии. Они имеют достаточно примитивное строение. Помимо ядра бактерии лишены всех типов пластид, комплекса Гольджи, ЭПС, лизосом и митохондрий. Но несмотря на это, бактериальная клетка способна осуществлять важнейшие процессы жизнедеятельности: анаэробное дыхание без использования кислорода, гетеротрофное и автотрофное питание, бесполое размножение и образование цисты во время переживания неблагоприятных условий.