Допустим, некий студент потерял свою сумку с книгами, а мы её нашли. Сможем ли мы по учебникам, которые лежат в сумке, догадаться о том, кто этот студент – математик или физик?
Вот учебник – «Физический практикум». А вот другой – «Уравнения математической физики». Ну, кто наш студент? Думаете физик? Нет, математик! И наоборот – учебники по высшей математике («Теория вероятностей» или «Функциональный анализ») запросто могут лежать в сумке у студента-физика.
Однако не будем торопиться с выводами. Разница между физиком и математиком на самом деле есть, причём разница огромная!
Вообразим, что мы получили какой-то набор экспериментальных данных. Неважно каких – по астрономии, по электричеству или по атомной физике. Какова наша задача? Найти какую-то зависимость, отыскать формулу, которая эти разрозненные экспериментальные данные свяжет в единое целое. Чтобы мы могли с помощью этой формулы делать научные предсказания. Скажем, Ньютон открыл формулу закона всемирного тяготения. Астрономы и физики всего мира этой формулой пользуются:
Так вот: это задача, которую решает математик. Формула найдена? Она работает? Всё, математик может валиться на диван и ждать получения какой-нибудь премии.
А что же физик? А вот для учёного-физика отыскание формулы – это только половина работы. Ему ещё нужно объяснить почему формула работает. Какие фундаментальные принципы делают её именно такой?
Например, блестящий физик-теоретик Макс Планк в 1900 году именно угадал свою знаменитую формулу (распределение энергии в спектре абсолютно чёрного тела):
Выглядит сложнее формулы Ньютона, но не сказать, чтобы что-то особо страшное. Бывают формулы намного длиннее, даже в школьном учебнике.
Но вот для того, чтобы объяснить эту формулу, Максу Планку пришлось перевернуть всё с ног на голову и начать создавать целый новый раздел физики – квантовую физику.
Как говорится, «не было у бабы горя, да купила порося».
Вот теперь мы можем вернуться к Ньютону. Когда он вывел формулу закона всемирного тяготения, другие учёные спросили: «Хорошо, допустим, все тела притягиваются друг к другу. Но почему?!» И вот тут Ньютону пришлось ответить (на латыни, как и положено тогдашнему учёному): «Hypotheses non fingo», то есть «гипотез я не измышляю».
На вопрос «как» Ньютон ответил, а вот ответа на вопрос «почему» пришлось ждать еще 200 лет, до появления общей теории относительности Эйнштейна.
Так что Ньютон прежде всего математик, а не физик. И недаром главная книга Ньютона называется «Математические начала натуральной философии» (то есть, говоря современным языком, «Математические начала физики»).
Иногда задают вопрос – а какая наука сложнее, физика или математика? Сложностей хватает и там, и тут – но есть и огромная разница.
Математика ничто не ограничивает в его фантазии, он может лепить из своих значков хоть чёрта лысого – главное, получить верный результат, найти закономерность, формулу. «Ой, что-то там не сходится, не совпадает? Тогда мы сейчас допишем вот так и вот так, и всё заработает!»
А вот физик чаще всего такой свободы лишён, ему приходится «играть по правилам». Ему за каждое «допишем формулу» приходится «измышлять гипотезы». Почувствуйте разницу – одно дело знать как управлять автомобилем, а совершенно другое – уметь объяснить от начала и до конца почему он ездит.
«Наука должна быть весёлая, увлекательная и простая. Таковыми же должны быть и учёные» (П.Л. Капица). и преподаватели. Но более всего наука должна быть честная. А для того, чтобы сбылась мечта всех студентов, нужно срезать профессора математической лженауки на первой же лекции. И прежним занудой он уже не будет. Знаю, что говорю. Сейчас вам останется лишь самостоятельно сформулировать вопросы на засыпку.
Философы и математики только считают, но ничего не знают. Вернее, знают много чего такого, что знанием не является. И это знание без понимания или слепая вера, несомненно, является ещё большим злом, чем невежество. Однако признался в этом только Сократ: «Я знаю, что ничего не знаю. А другие не знают даже этого». И не случайно, например, изобретение микроскопа и телескопа принесло познанию Природы и Вселенной гораздо больше, чем все философы и математики, взятые вместе.
«Математика – один из видов искусства» (Норберт Винер. На снимке вверху он и есть.) Тогда «Зачем нужна математика, если есть кино?» (Мгновения жизни). А затем она и нужна, чтобы всё точно знать. Например, вы знаете, что «За время падения яблока Земля подпрыгивает навстречу ему на половину диаметра атомного ядра» (Википедия)? А чтобы Земля смогла допрыгнуть до середины высоты яблони, ясен пень, масса яблока должна быть в точности равной массе Земли. Это математический закон падения яблок, открытый Ньютоном. И ни один математик не понимает, в чём тут юмор.
Математики не умеют считать. Даже «Среди крупных математиков могут быть и такие, что не умеют считать» (Новалис). А всё отчего?
Математика началась с геометрии… и – неблагодарная – искривила её. Современная математика – это как ещё один хрусталик в глазу: не исказив этот мир, она его не отражает. «Законы математики, имеющие какое-либо отношение к реальному миру, ненадёжны; а надёжные математические законы не имеют отношения к реальному миру» (А. Эйнштейн). «В реальной жизни, поверьте мне, нет никакой алгебры» (Фран Лейбовиц). Даже дважды два – всегда не четыре, если речь о качестве или свойствах и о физических взаимодействиях.
Ретивость математиков привела к появлению математической физики, которую уже никто не понимает. «В сущности, теоретическая физика слишком трудна для физиков» (Давид Гильберт). «С тех пор, как за теорию относительности принялись математики, я её уже сам больше не понимаю» (А. Эйнштейн). «Я надеюсь, что кто-нибудь объяснит мне квантовую физику, пока я жив. А после смерти, надеюсь, Бог объяснит мне, что такое турбулентность» (Вернер Гейзенберг). «Я думаю, что смело могу утверждать: квантовую физику не понимает никто» (Ричард Фейнман). «Чем большим успехом квантовая теория пользуется (у математиков), тем глупее она выглядит» (А. Эйнштейн). А всё потому, что «Математика – это доказательство самых очевидных вещей наименее очевидным способом» (Д. Пойа). И «Математика – сверхъестественная наука» (Лев Ландау). поэтому чего бы она ни коснулась, всё превращается в сказку.
Вопрос профессору на засыпку: если давление на погружённое горизонтальное плоское тело больше снизу, чем сверху, то что происходит с телом. Математики считают, что архимедова сила равна положительной разнице разновекторных давлений на тело, поэтому данное тело у них всплывает. Смотрите Википедию по запросу «Закон Архимеда». А физики говорят, что повышенное давление среды под погружённым телом может быть создано только таким телом, плотность вещества которого больше плотности среды, поэтому такое тело погружается и опускается на самое дно.
Другой пример. A = F/m – это формула второго закона Ньютона, где: a – ускорение тела; F – сила, действующая на тело; m – масса самого тела. Из этой формулы следует, например, что при увеличении силы в 10 раз и при уменьшении массы тела тоже в 10 раз ускорение тела увеличится ровно в 100 раз. А в каких случаях такое возможно. Правильно, ни в каких. Например, совершенно немыслимо, чтобы при увеличении толщины плеч арбалета и силы их натяжения со 100 кГс до 1000 и уменьшении веса стрелы с 50 г до 5 начальная скорость стрелы увеличивалась бы со 110 м/c до 11 км/с. А это, знаете ли, вторая космическая скорость, то есть скорость убегания от Земли. Но именно этой глупости учит наших детишек математическая формула второго закона механики, не имеющая никакой «предсказательной силы»; именно этому псевдознанию учит всех нас теоретическая физика.
Обратите внимание, когда мы говорим, что ускорение зависит от силы, приложенной к телу, и массы тела, мы говорим вполне разумно. Но, когда мы это же самое записываем в математическом виде и придаём записанному статус закона, мы совершаем глупость. И из этой глупости растут ноги у всей математической физики.
Из третьего закона Ньютона (действие всегда равно противодействию) следует и закон сохранения импульса. Из одного придуманного математиками закона следует другой. В обоих этих законах уже нет даже времени взаимодействия – значит, и нет самого взаимодействия. Однако из этих законов, упрощающих математикам решение своих теоретических задачек и «мысленных экспериментов», следует, например, что ракету толкает вперёд как раз-таки закон сохранения импульса. К.Э. Циолковский, простой учитель, жизнь положил на то, чтобы доказать теоретикам, что ракету толкает асимметричное давление непрерывного взрыва на стенки асимметричной камеры сгорания, а не математический закон: дескать, пока есть хоть какое-то давление в камере сгорания, ракета может ускоряться. Теоретики же считали, что скорость ракеты не может быть больше скорости частиц реактивной струи… Этому их якобы научил сам Ньютон и строгий математический закон сохранения импульса. Впрочем, в ваших учебниках ничто не изменилось.
Молекулярно-кинетическая теория считается «самой успешной математической теорией 20-го века». Однако чуть ли не Архимед уже знал, что все жидкости и газы имеют вес, находятся под давлением веса выше расположенных масс и состоят из одинаковых, равноудалённых и условно неподвижных (колеблющихся или дрожащих) частиц, находящихся в состоянии взаимного отталкивания и неустойчивого (или чуткого) равновесия и взаимно отталкивающихся в газах на расстояниях много больших линейных размеров самих частиц. Правота Архимеда даже не нуждается в доказательствах, ибо у хаоса нет веса. Это знали древнегреческие философы, считавшие воздух невесомым веществом. Но вам, я думаю, будет достаточно и одного опыта.
В пустой трёхлитровой банке находится прозрачный «кристлгаз», то есть воздух. Причём, он под давлением веса выше расположенных слоёв находится в банке в сдавленном и распёртом состоянии. Бросаем в банку зажжённую спичку (пусть спичка потухнет ещё в полёте), закрываем банку крышкой и, дождавшись полной остановки дыма в банке, двумя руками плавно поворачиваем её в горизонтальной плоскости вокруг вертикальной оси симметрии. Дым и, следовательно, воздух в банке поворачиваются вместе с ней. Наливаем немного воды в банку и так же плавно поворачиваем её. Всплывшая спичка и вода поворачиваются вместе с банкой.
Вот и всё: стороннику кинетической теории уже никогда не удастся объяснить результат этого «кухонного» опыта, ведь при хаотическом движении частиц им, суматошным, наши манипуляции с банкой были бы совершенно безразличны, и воздух в поворачиваемой банке остался бы неподвижным. Но «Если факт противоречит моей теории, тем хуже для факта» (Гегель).
Итак, за что физики не любят математиков. Правильно, за их псевдоучёность и высокомерие. И вообще, тот, кто пустил математиков в физику, сделал фатальную для неё, физики, ошибку.
Воображеньем прозорливым К догадкам верным нас несло… Но сонм учёных кропотливых Свернул наш поиск — на число.
И лязгом счёта оглушённый Забыл наш ум — решенья ключ… Стал слепнуть, в шоры цифр втеснённый. А был так зряч и так могуч!
Уж цифре памятник построен, Распята Истина на нём. Поклонник счёта, жрец и воин Простёрся ниц перед числом:
Не осознать бедняге в заблужденье, Как много лжи за ширмой исчисленья!
Преподаватель выездных олимпиадных школ «Фоксфорда» и МФТИ. Преподаватель вечерней физико-технической школы при МФТИ.
Как вы пришли в профессию?
Сначала я планировал просто подрабатывать репетиторством на первых курсах университета. Последние три года учёбы в школе специально сохранял полезные учебные материалы — конспекты, тетради, пособия, — чтобы использовать в преподавании. А потом втянулся и выбрал карьеру педагога, несмотря на другие перспективы, которые даёт высшее образование МФТИ.
Какие качества ценны для педагога?
Лично я люблю учителей, которые не только понятно объясняют, но и устанавливают с ребёнком близкий контакт. Круто, если ты можешь поговорить с преподавателем на сторонние темы.
Конечно, без качественного владения дисциплиной и умения объяснять — никуда. Но если педагог становится ребёнку другом — для меня это критерий высшего пилотажа.
В чём главная сложность изучения физики?
Сложнее всего поверить, что физика — это просто. Многие школьники боятся физики как огня — а на самом деле физика гораздо легче, скажем, курса математики.
В физике легко проводить параллели и аналогии с реальной жизнью. Большинство законов интуитивно понятнее, чем сложные доказательства и теоремы в математике.
Физика — это просто. Всегда говорю ученикам: «Сейчас вы сами увидите, что всё гораздо проще, чем казалось».
Как физика может пригодиться в жизни тем, кто не поступает на физфак или мехмат?
Физика — везде. Она вокруг нас! Поэтому знания из школьного курса нужны всем — даже гуманитариям.
С помощью физики можно вычислить, сколько килограмм дров нужно, чтобы затопить печь в деревенском доме, или сварить походный обед в лесу в котелке. Физика объясняет, почему масло и вода не смешиваются, если добавить одно в другое, а остаются на двух уровнях.
Если дома нет весов, а они нужны, знания физики помогут соорудить простую конструкцию рычажных весов из бумаги, картона, бутылок и других подручных средств.
Когда ты разбавляешь чай холодной водой, чтобы поскорее остыл, — зная физику, сможешь вычислить, сколько именно налить воды для комфортной температуры. А ещё физика подскажет, за какое время закипит чайник определённой мощности.
Освоив курс физики, понимаешь, сколько хранятся те или иные продукты при разных температурах. Сколько градусов в холодильнике, а сколько в морозилке, и почему. И многое другое!
Помимо базового, в «Фоксфорде» я веду три курса экспериментальной физики. Там мы на каждом занятии ставим опыты. Это позволяет ребятам ещё лучше понять, что физика — и есть наша жизнь.
Чем занятия в онлайне отличаются от обычных?
До «Фоксфорда» я в основном преподавал очно. Но мне удалось быстро переключиться на формат дистанционки. Главное, как мне показалось, — это научиться общаться с учениками в чате. Если дети чувствуют, что ты общаешься и слышишь их, разница с очным занятием минимальна.
В онлайне немного труднее отследить, все ли ученики участвуют в уроке. Поэтому я привлекаю внимание к сложным темам и прямо говорю: «Так, сейчас все слушаем внимательно! Готовы?». Важно сконцентрировать внимание ребёнка на том, что ты объясняешь.
Иногда использую лайфхаки — вставляю в презентацию популярный у подростков мем, прыгаю на 360 градусов, показываю тенью собачку. Что угодно, что привлечёт внимание ребёнка и заставит формулу, которую мы проходим, врезаться в мозг.
Шрек вместо кубика и блоков
В целом онлайн-образование эффективней очного. Ты тратишь меньше времени, никуда не ездишь. Сидишь с комфортом дома, в удобных шортах и футболке. Учишь, что нужно именно тебе.
Есть ли минусы у домашнего образования?
На домашней форме обучения приходится уделять больше внимания социализации ребёнка. Если школьник осваивает программу на дому, он не взаимодействует с коллективом сверстников на ежедневной основе.
Но нехватку общения легко восполнить секциями, кружками по интересам, экскурсиями, детскими лагерями. Тогда ребёнок и получает качественное образование, и развивается в социальном плане.
Другой минус — трудности с концентрацией у младших подростков. Если в обычной школе их дисциплинирует формализованная обстановка, то на онлайн-уроке дети полностью расслабляются и легко отвлекаются. Допустим, в кадре пробежала кошка — всё, внимание переключилось.
Здесь помогает интерактив и подключение игровых элементов. Да и просто взросление — старшие классы уже легче фокусируются на теме онлайн-занятия.
Что делать, если физика не даётся ребёнку вообще?
Часто проблема не в ребёнке, а в подаче материала. Если педагог объясняет монотонно и занудно, а учебник написан заумным академическим языком — школьник, который и так убеждён в сложности предмета, никогда не подступится.
Поэтому важно найти преподавателя, который объясняет максимально доходчиво. Перед тем как ввести понятие или формулу, я станцую, покажу видео, нарисую картинку или приведу пример из жизни. Потом поясню суть простыми словами. И только после этого назову термин.
Ещё одна причина, почему с физикой возникают проблемы, — многое в курсе физики из государственной программы завязано на математике. Например, необходимо делать вычисления или выражать из одного другое.
В обычной школе физика идёт вперёд математики — бывает, что тема, которая уже изучается в курсе физики, основывается на теме из математики, которую дети не проходили. В таком случае стоит либо менять школу, либо подтягивать математику отдельно.
В чём секрет успешного освоения курса физики?
Простая, но эффективная стратегия заключается в повторении материала. Это 70% успеха — особенно на уровне старших классов.
Даже если ты усвоил на занятии абсолютно всё, материал без повторения выветрится к следующему уроку. Одно дело — понять, что тебе сказали простыми словами. Другое — применить новые знания в домашней работе. Бывает, что на уроке понял объяснения, а потом смотришь на задачу и не понимаешь, что происходит.
Нужно перечитывать учебник и конспекты после занятия, полностью выполнять домашнее задание, пробовать дополнительные упражнения. Тогда информация уложится в голове. А главное, научишься применять знания на практике.
Стоит ли сдавать физику на ОГЭ?
Я не рекомендую сдавать физику в девятом классе. В экзамен нынешнего формата включены темы, которые проходят только в 10 и 11 классах. Девятиклассникам их преподают очень быстро, поверхностно и в укороченном варианте, чтобы те могли хоть как-то написать ОГЭ, а в следующие два года разбирают подробно.
Например, магнетизм — сложная для изучения тема. Тяжело представить, что происходит на уровне электронов, куда они летят и зачем. Девятикласснику будет сложно осваивать такие темы самостоятельно. А школьной программы совершенно недостаточно.
Чтобы успешно сдать ОГЭ по физике, нужно быть готовым самому разбирать темы старших классов, либо заниматься с репетитором. Решайте тесты и помните, что часть знаний в школе не дадут вообще. Важно рассчитывать силы.
Ещё лайфхак — смотреть передачу «Галилео», чтобы легко решать задачи на применение и знание физики в жизни.
Как подготовиться к ЕГЭ по физике?
Сначала определитесь с целью. Если ребёнку требуется только сдать государственный экзамен — это одно. А если хочется реально понимать физику, то необходима иная стратегия подготовки.
В первом случае — монотонно решайте тесты. Если задача состоит в том, чтобы сдать экзамен и забыть про физику, то такой подход сохранит силы и энергию.
Во втором случае — метьте на олимпиады. Фишка в том, что олимпиадные задачи по физике — это в большинстве случаев сложные задачи по школьному курсу. Для написания олимпиад по физике не требуются дополнительные знания. Скорее, нужно научиться видеть альтернативные подходы и методы решений.
Если хотите по-настоящему понимать физику, фокусируйтесь на олимпиадных задачах и участвуйте в конкурсах. А за решение непосредственно тестов ЕГЭ можно взяться гораздо позже.
Даже если вы ничего не займёте на олимпиаде — сам факт участия и подготовки даст огромную базу. Структура ЕГЭ и задачи госэкзамена покажутся легче. Я рекомендую начинать участвовать в интеллектуальных конкурсах уже с седьмого класса. Это развивает голову во всех направлениях.
В каких олимпиадах обязательно нужно принять участие?
Проще всего подготовиться к Физтеху. Как правило, там адекватно сформулированы задания. Ещё есть «Ломоносов», «Покори Воробьёвы горы!», школьный этап Всеросса.
Из олимпиад на любителя — МОШ (Московская олимпиада школьников). Основная сложность там заключается в формулировке заданий.
Когда я участвовал в олимпиадах, для меня было кайфом разобраться в заковыристом условии и понять суть задачи. Но если не готовы, лучше начать с конкурсов попроще.
Что посоветуете школьнику для поступления в престижные технические вузы и специальности, связанные с физикой?
Как можно больше учиться самому. Курсы и репетиторы — это хорошо. Но чем регулярнее ты занимаешься самостоятельно, тем больших высот достигнешь. В конце концов, всё зависит от тебя. Поступить на бюджет в престижный вуз — реально как с подготовкой под руководством профессионалов, так и без.
Рекомендую использовать все возможности вокруг. Просите дополнительные задания у учителя. Участвуйте в олимпиадах. Занимайтесь по бесплатным ресурсам в интернете. Смотрите тематические видео на Youtube.
Ещё советую попробовать поступить в сильный физмат-лицей после восьмого или девятого класса — это колоссальный опыт, который полностью меняет человека. В лицеях учителя знают каждого ребёнка. Это большая и дружная семья. Ты каждый день варишься в коллективе интеллектуально развитых людей и быстро растёшь.
Чем вы увлекаетесь?
Со школы занимаюсь футболом, баскетболом, волейболом, плаванием. Играл в сборной МФТИ по футболу. Сейчас учусь в магистратуре, капитан факультетской команды. Прошёл школу вожатых — учу подопечных «вожатить». Играю на гитаре — научился по роликам в интернете. Даже пишу свои песни, но в публичный доступ не выкладываю.
Сейчас читаю Ричарда Фейнмана «Вы, конечно, шутите, мистер Фейнман!». Крутые рассказы о жизни известного и талантливого физика. Написано простым языком — поэтому доступно не только специалистам, но и массовому читателю.
Люблю сериалы — например, «Ходячие мертвецы» и «Остаться в живых».
Что пожелаете ученикам «Фоксфорда»?
Как можно больше пробуйте, пока учитесь в школе, и ищите своё.
Не бойтесь отказываться от желаний, навязанных социумом. Если родители отправили вас учить то, чего вы не хотите, — найдите смелость напрямую поговорить с ними и рассказать о настоящих желаниях.
У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.
Попробовать бесплатно
Интересное по рубрике
Найдите необходимую статью по тегам
Подпишитесь на нашу рассылку
Мы в инстаграм
Домашняя онлайн-школа Помогаем ученикам 5–11 классов получать качественные знания в любой точке мира, совмещать учёбу со спортом и творчеством
Посмотреть
Рекомендуем прочитать
Реальный опыт семейного обучения
Звонок по России бесплатный
Посмотреть на карте
Если вы не нашли ответ на свой вопрос на нашем сайте, включая раздел «Вопросы и ответы», закажите обратный звонок. Мы скоро свяжемся с вами.