что собой представляет термоядерный синтез в солнце
Какая термоядерная реакция происходит на Солнце?
Известно, что тепло вырабатывается на Солнце вследствие ядерных реакций. В чем суть этих загадочных процессов?
Большая часть привычного нам вещества состоит из молекул и атомов, например, из атомов железа или кислорода. В ходе химических реакций атомы элементов перестраиваются в новые молекулы, но сами не меняются. Долгое время считалось, что получить из атомов одного элемента атомы другого элемента (скажем, из свинца золото) невозможно. Однако в конце XIX в. были открыты ядерные реакции, в ходе которых изменяются сами атомы.
На Солнце происходят термоядерные реакции. Основной из них является протон-протонный цикл. Его суть заключается в том, что из водорода получается гелий. Сначала два протона (а протон – это название ядра водорода) сливаются друг с другом и образуют дейтрон – ядро дейтерия, одного из изотопов водорода. Далее дейтрон сталкивается ещё с одним протоном, в результате возникает изотоп гелий-3. Наконец, два ядра гелия-3 также сливаются, что приводит к образованию гелия-4 и освобождению 2 протонов. Получается, что в ходе цикла этих реакций из 4 протонов получается 1 ядро гелия-4, при этом выделяется некоторое количество энергии.
На протон-протонный цикл приходится 98% энергии, выделяемой на Солнце. В ходе других реакций из гелия получается углерод, из углерода – неон и магний, из неона – аргон и кальций и т.д. Таким образом, в звезде «по цепочке» из водорода образуется огромное количество разнообразных элементов. Этот процесс называют звездным нуклеосинтезом. Изначально, после Большого взрыва, во Вселенной не было никаких других элементов, кроме водорода, гелия и небольшого количества лития. Именно благодаря звездному нуклеосинтезу мы живем в мире, где есть железо, золото, серебро, кислород и ещё порядка 100 элементов таблицы Менделеева.
Для термоядерных реакций нужны особые условия. Дело в том, что протоны обладают положительным зарядом, поэтому они отталкиваются друг от друга. Ядра водорода должны обладать огромной скоростью, чтобы они смогли столкнуться, несмотря на противодействие электростатических сил. Скорость же элементарных частиц тем выше, чем выше температура вещества и его плотность. В ядре температура достигает 15 млн °С, а давление составляет 340 млрд атмосфер. Этого как раз достаточно для термоядерных реакций. Во внешних же слоях Солнца термоядерные реакции не идут, хотя там тоже весьма жарко.
В ходе термоядерных реакций Солнце каждую секунду «сжигает» более 4 млн тонн водорода. Через 5 млрд лет он почти закончится, что приведет к резкому расширению Солнца и его последующему угасанию.
Список использованных источников
Термоядерный синтез: энергия будущего?
Управляемый термоядерный синтез — чудо, которое давно ждут и которое всё никак не станет реальностью. Ничего эффективнее построенной на термоядерном синтезе энергетики быть не может. После изобретения термоядерных электростанций энергии станет столько, что хватит всем, притом почти даром. Но титанические усилия учёных до сих пор не увенчались успехом, хотя бьются над этой проблемой уже больше полувека. Так достижимо ли термоядерное совершенство?
Энергия звёзд
Термоядерный синтез гелия из водорода — самая распространённая реакция во Вселенной. И самая эффективная в плане выхода энергии по отношению к массе использованного горючего. А ещё, вероятно, самая экономичная, поскольку во Вселенной вообще мало что есть, кроме водорода.
Если мы получаем энергию не путём термоядерного синтеза, то мы получаем её неоптимальным способом. Любой другой источник заведомо менее производителен, потребляет топливо, запасы которого (по сравнению с запасами водорода) ограничены, а зачастую оно ещё и отравляет окружающую среду отходами. У термоядерного реактора в этом отношении всё идеально, гелий-то не отход, а безвредный газ для воздушных шариков.
И всё же идея термоядерной энергетики не особо популярна у фантастов. Откуда берётся электроэнергия в процветающих мирах будущего, обычно не говорят вообще или упоминают какой-нибудь люксоген с дробной пространственной размерностью. Писатели интуитивно чуяли связанный с термоядерным синтезом подвох. Учёные же, напротив, долгое время принципиальных затруднений не предвидели.
В 1950-x проблема казалась сложной, но разрешимой. Правда, в ту технооптимистичную эпоху «сложной, но разрешимой» считалась вообще любая задача, которую удалось чётко сформулировать. В 1960-е футурологи, опираясь на аналогию с ядерной и водородной бомбами, уверенно предсказывали, что эпоха термоядерной энергетики наступит через десять-пятнадцать лет после строительства первой АЭС. Физики не возражали.
Ни в 1970-е, ни в 1980-е водородные электростанции не появились. Но учёные не сомневались: промышленный синтез возможен даже с доступными технологиями, если их правильно применить.
К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Прогноз ухудшили до двадцати пяти лет. А в начале XXI столетия — до пятидесяти. Теоретические знания углубились настолько, что стало непонятно, с какой стороны подступиться к задаче.
Суть проблемы
На планете Плюк из фильма «Кин-дза-дза» кончилась вода, поскольку из неё делали луц — горючее для звездолётов. Логично предположить, что луц — это водород
Проблема в том, что реакции синтеза отличаются высоким порогом. Тяжёлое ядро урана норовит распасться само по себе, но протоны — ядра водорода — отталкиваются друг от друга кулоновской силой. Если сломить сопротивление одноимённых зарядов, то при слиянии частиц выделится несравненно больше энергии, чем затрачено. Но без первоначальных «вложений» не обойтись.
Казалось бы, мелочь. Ну порог, ну и что? С точки зрения физики высоких энергий это не порог, а курам на смех! Мощный ускоритель частиц не просто столкнёт протоны лбами, он расплющит их друг о друга в кварк-глюонную плазму! Но кварки нам не нужны. Так что берём синхротрон попроще и направляем пучок протонов на мишень из содержащего водород материала. Порог реакции будет преодолеваться, и в мишени начнётся синтез.
Термоядерный реактор ZETA, 1957 год
Электроядерные реакторы существуют несколько десятилетий и, кроме экспериментальных целей, применяются для производства ценных изотопов. Но вырабатывать энергию таким способом, увы, нельзя. Ядро атома водорода по сравнению с самим атомом очень мало, и попасть «ускоренным» протоном в яблочко мишени трудно. «Снаряд» просто увязнет в бесконечных электронных оболочках, растратив энергию на нагрев мишени, и никакой термоядерной реакции не произойдёт. Можно избавиться от электронов, пустив навстречу друг другу пучки полностью ионизированных частиц, но принципиально ситуацию это не изменит. Столкновения будут слишком редкими, чтобы выход от термоядерных реакций оправдал затраты на разгон частиц.
Термоядерный синтез окажется экономически целесообразным, только если реакция станет цепной: чтобы необходимая для преодоления барьера температура в камере сгорания достигалась за счёт самого синтеза ядер.
Что же касается «холодного» синтеза, о его «открытии» время от времени объявляют ещё с 1990-х. Изобретатели, правда, никогда не уточняют, какая именно из термоядерных реакций у них произошла. Ведь реакцию синтеза опознают по продуктам, вылетающим из активной зоны. Если при «холодном синтезе» нет радиации — значит, нет и синтеза.
Плазма
Вторая часть проблемы в том, что проводить протон-протонный синтез не только сложно, но и бессмысленно. При столкновении двух протонов рождается дейтрон — состоящее из протона и нейтрона ядро тяжёлого водорода, плюс позитрон и нейтрино. Львиную долю энергии уносит нейтрино, проходящее сквозь нашу планету, как свет сквозь стекло, и, как следствие, малопригодное для кипячения воды.
Вот и получается, что, хотя водорода во Вселенной много, экономике от него пользы никакой. В недрах Солнца протон-протонный синтез — лишь первый шаг водород-гелиевого цикла, ведь четыре ядра водорода сливаются в ядро гелия не разом, а в три приёма. Но для завершения цикла важно, чтобы промежуточные продукты синтеза — дейтерий и гелий-3 — не покидали зону реакции, а энергия, выделившаяся на предыдущем этапе, упрощала преодоление барьера реакции на следующем. Звёзды способны это обеспечить. Водород в их ядрах находится в сверхтвёрдой и сверхплотной («металлической») форме. Ядрам дейтерия и гелия-3 просто некуда деться!
Солнечные, приливные, ветровые и даже гидроэлектростанции используют энергию Солнца. То есть термоядерную. Так что именовать эти источники «возобновляемыми» неправильно. Никто новый водород на Солнце не подвозит!
Итак, имитация природных процессов — не наш путь. Разогретый до миллионов градусов металлический водород нельзя получить в лабораторных условиях. А если б и было можно, то миллиард лет выколачивать из него энергию по искре — идея сомнительная. Термоядерный реактор должен воспроизводить не будничное тление светил, а условия взрыва сверхновой, когда реакции идут при температуре, обеспечивающей преодоление кулоновского барьера при каждом столкновении.
Именно благодаря тому, что сердцевины звёзд состоят из твёрдого водорода, термоядерные реакции могут идти в них при температуре каких-то шесть миллионов градусов. Для преодоления кулоновского барьера этого не хватит. Однако некоторые ядра оказываются достаточно «горячи» для вступления в реакцию. Это редкость даже при огромном сжатии, потому-то звёзды и живут миллиарды лет. Излучение обычно уносит чуть больше энергии, чем выделяется в термоядерных реакциях. Если же баланс положительный, температура начинает расти, интенсивность синтеза увеличивается по экспоненте, и звезда вспыхивает, как сверхновая…
Конечно, удерживать разогретое до температуры 100 миллионов кельвинов вещество можно только в плазменной форме. Причём речь тут о плазме в том смысле, какой вкладывают в этот термин физики. Физическая плазма — не ионизированный газ, а четвёртое агрегатное состояние вещества, наблюдающееся при разрежении столь высоком, что взаимодействием частиц можно пренебречь. Плазма не подчиняется обычным для газа законам. В ней нет давления, она не нагревается при сжатии и, что особенно приятно, не стремится занять весь доступный объём. Ценой минимальных затрат её можно удерживать в магнитной ловушке в форме кольца. Независимо от температуры, ядра послушно будут бегать по кругу вблизи центральной оси откачанной трубы.
Тороидальная магнитная ловушка
Ситуация как будто парадоксальная. Нет взаимодействия — не может быть и столкновений, реакций синтеза и разогрева вещества. Но грань между плазмой и газом тонка. Скажем, хотя каждый кубический километр космической туманности представляет собой плазму, облако в целом живёт по законам газа. Туманность настолько велика, что молекула не может покинуть её пределы без взаимодействий с другими. Так и в магнитной ловушке при любой плотности вещество будет газом, ведь пробег бесконечен, и одна частица непременно столкнётся с другой. Притом с ростом температуры (а значит, и скорости, и расстояния, преодолеваемого частицей за единицу времени) будет расти и давление. В плоскости же поперечной линии движения частицы будут существовать по законам плазмы.
Проблемы топлива
Идею пылающего кольца, плотного в одном измерении и представляющего собой высокий вакуум в прочих, уже в 1950-х успешно воплотили в советских установках ТОКАМАК и американских стеллараторах, различающихся способами предварительного разогрева топлива. И в СССР, и в США в качестве термоядерного горючего использовали смесь дейтерия и трития, так как реакции с участием тяжёлого и сверхтяжёлого водорода возможны при меньшей, чем у других элементов, температуре.
Реакции-то начинались, но кольцо из-за перемены температуры и плотности теряло стабильность и рассеивалось. Всё же реакторы совершенствовались. Уже в конце 1970-х исследователи считали, что победа близка и «положительный выход» (при цепной реакции синтеза выделяется больше энергии, чем затрачено на её запуск) будет достигнут сразу, как только им выделят денег на новую, более дорогую, установку…
Новый ТОКАМАК (Казахстан)
Но нет, положительный выход достигнут не был. А в конце прошлого века даже у оптимистов возникло подозрение, что это и к лучшему. Проблема термоядерного синтеза заключалась в тритии. В случае синтеза с участием тяжёлого и сверхтяжёлого водорода 80% выделившейся энергии уносил рождающийся в реакции нейтрон.
Эти не имеющие заряда частицы сочетают высокую проникающую способность с исключительной зловредностью. С электронными оболочками атомов нейтроны не взаимодействуют, что позволяет им преодолевать десятки метров бетона и свинца. Попадая же в атомное ядро, нейтрон или разрушает его, или поглощается им, превращаясь в радиоактивный изотоп. А образующиеся в материале пузырьки газа приводят к потере прочности, деформации и разрушению стальных деталей. В лучшем случае после множества рикошетов нейтрон просто распадается и становится атомом водорода.
Персонал электростанции может укрыться от нейтронного излучения за бассейнами с водой (они в любом случае понадобятся для охлаждения), но защитить сам реактор от нейтронов не выйдет. А энергетическая установка, расходующая 80% выделяющейся энергии на саморазрушение, прослужит недолго.
Остальные 20% энергии обойдутся слишком дорого. Тритий не встречается в природе, его получают искусственно в ядерных реакторах по цене 30 миллионов долларов за килограмм. А с учётом нейтронных потерь килограмм трития может заменить лишь три тысячи тонн нефти. Даже если «чёрное золото» вдруг подорожает до 1600 долларов за баррель, дейтерий-тритиевая энергетика не станет оправданной экономически. Ведь для получения трития всё равно требуются ядерные реакторы, потребляющие уран, а значит, электричество дешевле будет вырабатывать на АЭС.
Тритий радиоактивен, но при распаде его ядра выделяются лишь нейтрино и электрон. Последний так слаб, что вредит только если тяжёлый водород включился в состав тканей организма. Брелок с тритиевой подсветкой — это безопасно. Даже если его проглотить
Поскольку тритий как термоядерное горючее не выдерживает критики, надежды связывают с изотопом гелий-3. Порог его реакции с дейтерием существенно выше, поскольку два протона гелиевого ядра отталкивают третий со вдвое большей силой. Но продуктами синтеза оказываются ядро обычного гелия (альфа-частица) и протон, что уже даёт выигрыш впятеро благодаря отсутствию нейтронных потерь.
Кроме того, гелий-3, в отличие от трития, стабилен и встречается в природе. Его много на Луне. Ещё в 1980-х годах подсчитали, что доставка гелия с Луны на Землю экономически оправдана. Для покрытия годичных потребностей человечества в энергии потребуется всего сотня тонн этого газа. Другой вопрос, что добыча такого количества гелия-3 предполагает переработку миллиардов тонн лунного грунта. Так что пока выгоднее производить гелий-3 искусственно. Из трития. И это ставит под вопрос осмысленность разработки даже экспериментальных установок для термоядерных реакций с участием гелия.
Именно гелий-3 добывает на Луне герой фильма «Луна-2112»
По разным причинам изотопы первых двух химических элементов в любых комбинациях для энергетики будущего бесполезны. Как и при создании водородной бомбы, исследователи убедились, что только на третий элемент периодической таблицы — литий — можно положиться. Он безопасен, не производит нейтроны при синтезе и, в отличие от реакторных изотопов водорода и гелия, ничего не стоит.
Но в случае с литием уже три протона будут объединёнными силами отталкивать четвёртый! И эта разница — решающая. В тороидальном (в форме бублика) плазменном реакторе изотопы водорода горят на практике. Гелий… должен в теории. Литий же не должен вообще! При температуре детонации его ядер плазма не может иметь необходимую для цепной реакции плотность.
Термоядерный ракетный двигатель
Импульсный реактор
Литий — ещё один кандидат в спасители термоядерного синтеза
Поскольку выделившейся энергии не так-то просто покинуть зону реакции, синтез, невозможный в плазме, в сжатом веществе даже при относительно низкой температуре разгорается по цепному принципу. Не использовать такое преимущество глупо. Импульсные реакторы, в которых термоядерная энергия выделяется в процессе микровзрывов, начали разрабатывать одновременно с плазменными — ещё в 1950-х годах.
Целевая камера на National Ignition Facility (NIF)
Двухметровая в поперечнике сфера, внутренняя поверхность которой полностью состоит из «стволов» направленных к центру лазеров, сама по себе фантастична. Но ещё фантастичнее принцип действия импульсного реактора. Залп световых пушек должен не обратить в пар (что легко представить), а, напротив, стиснуть, обжать давлением излучения трёхмиллиметровую топливную таблетку до диаметра в миллиметр или меньше.
Картина эта так поражала воображение, что половина исследователей, засев за вычисления, на всякий случай поспешила покрепче обосновать теоретическую невозможность работы построенного на безумном принципе реактора. Другая же половина упорно пыталась импульсную установку создать — и тоже преуспела. В 2013 году в Калифорнии на реакторе NIF был достигнут «положительный выход», так и оставшийся недосягаемым для плазменных реакторов.
Праздновать победу тем не менее рано. Дело не только в том, что в качестве топливных таблеток NIF использовали стеклянные шарики с дейтерий-тритиевым льдом, а потому превысившая затраты на лазерный импульс энергия выделилась в форме быстрых нейтронов, не имеющих ценности. Добившись успеха с водородом, можно будет перейти к экспериментам с гелием, а затем и с литием, заменив лазеры на более эффективные циклические ускорители…
Уголь будущего: сподумен — прозрачный минерал, содержащий литий
Но на этом этапе в полный рост встаёт четвёртая проблема термоядерного синтеза. Как преобразовывать выделяющуюся в активной зоне энергию в электричество, неведомо никому. Выпущенные на волю силы микромира порождают слишком «жёсткое» для использования в мирных целях излучение.
Одно время модно было твердить, что «проблема термоядерной энергетики — это проблема создания новых материалов», но постепенно возобладало иное мнение. По законам нашей Вселенной материалы, без вреда поглощающие быстрые нейтроны и не тающие под градом релятивистских альфа-частиц, существовать не должны. А значит, проблема не в них, а во Вселенной. Та просто не приспособлена для термоядерных реакторов существующих ныне типов!
Перспектива
В наши дни исследования в области управляемого термоядерного синтеза продолжаются с успехом и полным осознанием того, что цель недостижима методами, которые мы сейчас можем вообразить. В таких ситуациях люди обычно говорят: «Не больно-то и хотелось!» — и ищут иное применение своим талантам. Но здесь не тот случай. Термоядерная энергия — настолько значимый для человечества приз, что работает другой принцип: «Если нельзя, но очень хочется, то можно».
А хочется очень! Только термоядерная энергия позволит колонизировать Солнечную систему, переправляя грузы на Марс не тоннами, а миллионами тонн, перегоняя на околоземную орбиту железоникелевые астероиды и добираясь до спутников Нептуна за три-четыре месяца.
В фильме «Железное небо» земные сверхдержавы передрались за гелий-3
Энергия синтеза, которую можно получать без ограничений (лития не так много, как водорода, но достаточно), полностью изменит и Землю. Станут возможными глобальные проекты, скажем, по очистке атмосферы от избытка парниковых газов, накопившихся в эпоху углеводородной энергетики.
Углекислый газ из атмосферы в любом случае придётся изымать, одновременно повышая плотность отражающей солнечный свет облачности. Ведь неограниченное производство электроэнергии, большей частью переходящей в тепло, обязательно приведёт к перегреву планеты. Но новые, немыслимые сейчас, возможности термоядерной эры наверняка позволят сгладить остроту проблем, ими же порождённых.
Термоядерный синтез на пальцах: от азов до практики
Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Тема действительно важная, ведь этот процесс является одним из ключевых источников энергии в современной Вселенной (благодаря нему, например, светит наше Солнце) и, возможно, в будущем станет почти неисчерпаемым источником энергии для Человечества, то есть для нас с вами.
Самая знаменитая формула на свете
Если вы интересуетесь физикой, то, думаю, хоть раз в жизни видели эту формулу:
Обычно её принято расшифровывать как формулу энергии, которой обладает каждый физический объект вне зависимости от прочих условий просто потому, что он имеет массу. То есть, даже тело, находящееся в состоянии покоя вне каких-либо полей и имеющее температуру, равную абсолютному нулю, всё равно обладает некоей энергией, то есть масса является «скрытой» энергией сама по себе. И эту энергию можно высвободить при определённых условиях.
Например, при столкновении частицы с её античастицей (скажем, электрона и позитрона) они взаимно уничтожаются с выделением энергии. То есть, их масса полностью переходит в энергию, и величина выделившейся энергии в точности определяется вышеупомянутой формулой, где под массой имеется в виду суммарная масса позитрона и электрона.
Но верно и обратное: не только масса способна превращаться в энергию, но и энергия способна превращаться в массу – или по крайней мере всё будет выглядеть так, что тело приобрело дополнительную массу в результате наделения его энергией.
Например, если мы разгоним частицу в ускорителе, то с точки зрения внешнего наблюдателя она начнёт вести себя так, как будто её масса выросла. Более яркий пример – фотоны, или кванты, т.е. мельчайшие порции, электромагнитного излучения. Согласно современным представлениям (с существенной точностью подтверждённым экспериментами) они вообще не имеют массы. Однако они обладают энергией, и поэтому в реальности ведут себя так, как будто масса у них есть.
Правда, в современной физике, дабы избежать путаницы, от термина «релятивистская масса» постепенно отказываются и в научной литературе его употреблять не принято. Это связано с некоторыми терминологическими тонкостями, способными привести к путанице в научных дискуссиях, однако нам, рассуждающим об этих вопросах весьма поверхностно и «на пальцах» подобное простительно. Поэтому мы можем говорить о полной эквивалентности энергии и массы: масса это энергия, а энергия это масса с точностью до множителя, равного квадрату скорости света.
И более того: в подавляющем большинстве случаев, когда мы говорим о массе, на самом деле мы имеем в виду выглядящую как массу энергию. Объясню, что я имею в виду.
Несуществующая масса
Окружающие нас тела состоят из молекул, молекулы состоят из атомов, а почти вся масса атомов сосредоточена в атомных ядрах. Атомные ядра, в свою очередь, состоят из протонов и нейтронов, то есть, получается, что масса окружающих нас тел в значительной степени определяется исключительно тем, какую массу имеют составляющие их протоны и нейтроны (с некоторыми оговорками, о которых речь пойдёт ниже).
Протоны и нейтроны, в свою очередь, состоят из кварков: в каждом из них их по три. Так вот: если мы просуммируем массу кварков, составляющих, например, протон, то окажется, что их суммарная масса составляет лишь около 1/10 от массы протона. Откуда же берутся остальные 9/10, ведь внутри протона кроме кварков других массивных, т.е. имеющих массу, частиц нет?
Всё дело в том, что кварки внутри протона или нейтрона находятся в поле ядерного взаимодействия, которое называется сильным взаимодействием. Это одна из фундаментальных физических сил, известных нам на сегодняшний день, наряду с силой тяжести, электромагнитной силой и ещё одним видом взаимодействия, именуемого слабым: в повседневной жизни мы с ним не сталкиваемся, в нашем тексте о нём речи также не будет, так что пока отложим его в сторону.
Мы знаем, что тело, помещённое в некоторое поле, в результате получает определённую энергию. Например, камень, поднятый над землёй, начинает обладать потенциальной энергией, пропорциональной его массе, ускорению свободного падения (то есть характеристике гравитационного поля Земли) и высоте. Будет обладать потенциальной энергией и заряженное тело, помещённое в электрическое поле.
Точно также и кварки внутри протона и нейтрона обладают определённой (и весьма значительной!) энергией, обусловленной их участием в сильном взаимодействии друг с другом.
Но так как эта энергия как бы «скрыта» внутри протона или нейтрона, то «снаружи» мы её не видим – за исключением наблюдаемого увеличения массы протона или нейтрона в результате эквивалентности массы и энергии.
Зафиксируем: 9/10 массы протонов и электронов – это на самом деле «законсервированная» в них энергия. И эта энергия может быть высвобождена, что и происходит в результате процессов, называемых ядерными реакциями.
Пойдём дальше, и соединим протоны и нейтроны в более сложные структуры – атомные ядра. Например, одно из простейших сложных ядер – это ядро атома дейтерия, состоящее из одного протона и одного нейтрона. Дейтерий – старший брат обычного водорода, ядро которого по сути представляет собой одиночный протон.
Так вот, масса протона составляет примерно 1,0073 т.н. атомной единицы массы, или а.е.м (1/12 массы атома углерода). Масса протона составляет 1,0087 а.е.м. Чему же будет равна масса ядра дейтерия? По идее, 1,0073 + 1,0087 = 2,016 а.е.м, не так ли?
А вот и не угадали. На самом деле масса ядра дейтерия – 2,0136 а.е.м, то есть примерно на 0,0024 меньше, чем должна быть.
То есть, сложив 2 и 2 (протон и нейтрон) мы получили не 4, как должны были бы, а 3 с чем-то. Мистика? Ничуть, если вспомнить, что на самом деле мы имеем дело не только и не столько с массой, сколько в виде «замаскированной под массу» энергией связи частиц внутри протона и нейтрона. А в физике ситуации, когда энергия связи сложной системы оказывается меньше энергии связи её элементов, нередки, и мы наблюдаем подобное чуть ли не каждый день.
Классическим примером является поведение мелких капель воды на оконном стекле или капель жира на поверхности супа. Вы, думаю, видели, как такие мелкие капельки сливаются в более крупные. В целом любые жидкие капли проявляют склонность к такому слиянию. Причина – более крупные капли обладают меньшей энергией, а точнее, меньшей энергией поверхностного натяжения.
Действительно, энергия поверхностного натяжения пропорциональна площади поверхности. А площадь поверхности двух отдельных капель до слияния оказывается большей, чем площадь поверхности «суммарной» капли после их слияния.
При этом надо помнить, что энергия поверхностного натяжения – это, в конечном счёте, энергия взаимодействия молекул внутри жидкости (которая, кстати, имеет электрическую природу, но об этом тоже в другой раз). И вот оказывается, что объект с большим числом частиц (большим объёмом, т.е. в данном случае большей массой) обладает меньшей энергией.
Куда же девается «лишняя» масса протонов и нейтронов, оказывающаяся «ненужной» в их новом связанном состоянии, характеризующимся более низкой энергией (массой)? А она высвобождается в виде чистой энергии – в основном тепловой (т.е. кинетической энергии движения частиц, например, тех же атомов и/или других частиц, получающихся в ходе ядерной реакции). При этом понятно, что количество высвобождающейся энергии можно определить всё по той самой формуле Эйнштейна про «эмцэ в квадртате», где в качестве массы будет стоять разница массы компонентов и массы получившейся из них системы: в нашем случае, протона, нейтрона и составленного из них ядра дейтерия.
В русскоязычной физической литературе эту разницу принято называть дефектом массы (имея в виду, что масса итогового ядра меньше суммы масс компонентов), в англоязычной же говорят об избытке массы (mass excess), имея в виду, что исходные компоненты по сумме тяжелее, чем получившееся из них ядро.
Зафиксируем: в результате соединения протонов и нейтронов в ядра часть их массы, обусловленной энергией связи составляющих их кварков оказывается «лишней» и высвобождается.
Больше – значит… легче?
Дефект массы сохраняется и для более сложных протон-нейтронных систем, и более того. Если мы будем «собирать» более сложные ядра не из отдельных протонов и нейтронов, а из других, более простых ядер (как это происходит на практике), то тоже будем наблюдать, что итоговое ядро будет иметь меньшую массу, чем сумма масс ядер, из которых мы его составили.
Например, если мы «склеим» три ядра атома гелия (точнее, гелия-4, в котором два протона и два нейтрона, масса 4,0026 а.е.м), то получим ядро атома углерода-12 (6 протонов, шесть нейтронов) с массой 12 а.е.м. ровно. Соответственно, при таком синтезе «лишней» окажется масса исходных ядер гелия в 0,007 а.е.м., которая выделится в виде энергии.
Эта тенденция характера для всех лёгких атомов: чем больше количество протонов и нейтронов в атоме, тем меньшая масса приходится на каждый протон и нейтрон. А значит, при слиянии более простых атомов в более сложные будет выделяться энергия. Именно этот процесс называется ядерным (термоядерным) синтезом.
Стоит добавить, что принцип «чем больше, тем легче» работает только для лёгких атомов – а именно, для элементов, чьи порядковые номера в таблице Менделеева (т.е. количество протонов в ядре) меньше чем 56, т.е. меньше чем железа. При синтезе более тяжёлых ядер энергия уже не выделяется, а поглощается, так как результат реакции оказывается тяжелее компонентов.
А начиная со свинца (атомный номер 82, т.е. 82 протона в ядре) ядра «включается» обратный процесс: энергетически выгодным (то есть, приводящим к уменьшению общей энергии системы) является процесс распада сложного атома на более простые компоненты: например, висмут-209 (83 протона, 126 нейтронов) «выплёвывает» ядро атома гелия-4 (2 протона, 2 нейтрона), превращаясь в таллий-205 (81 протон, 124 нейтрона). При этом масса гелия-4 (4,0026 аем) и таллия-205 (204,9744 а.е.м) в сумме оказывается меньше массы исходного висмута-209 (208,9804 а.е.м) на 0,003 а.е.м. Избыточная масса при распаде тяжёлых элементов выделяется в виде энергии весьма похоже на то, как это происходит при синтезе лёгких.
Последний вариант превращения массы в энергию мы уже освоили и используем в атомных реакторах, радиоизотопных электрогенераторах и других устройствах. Однако эта технология обладает рядом недостатков: для реакторов необходимо достаточно редкое и дорогое топливо, запасы которого к тому же ограничены; кроме того, побочным продуктом реакции являются высокорадиоактивные отходы, обращение с которыми представляет известную трудность.
Ядерный синтез перспективнее, однако освоить его сложнее: если тяжёлые радиоактивные ядра в принципе распадаются сами по себе, и нам остаётся лишь собирать выделившуюся энергию. Но для того, чтобы заставить склеиться лёгкие ядра, надо приложить немало сложностей.
Вопреки кулону
Вернёмся к нашему примеру с каплями на стекле (или, скажем, на поверхности супа): мы видим, что они достаточно легко сливаются без всяких усилий с нашей стороны, так как природа склонна переводить системы в состояние с минимальной энергией. Но если мы придадим нашим каплям некий одноимённый электрический заряд, то мы увидим, что сливаться капли перестали. Причина понятна: сила электростатического отталкивания препятствует их достаточному сближению.
Так вот: наши атомные «капельки»-ядра как раз имеют положительный заряд, так как состоят из нейтральных нейтронов и положительно заряженных протонов. В результате силы электростатического отталкивания также препятствуют их слиянию.
Физики говорят, что электрические силы создают между атомами потенциальный барьер, который ещё называют кулоновским. Для того, чтобы атомы могли преодолеть этот барьер и столкнуться, запустив процесс ядерного синтеза, они, во-первых, должны находиться достаточно близко друг к другу, а во-вторых иметь достаточную скорость. На языке параметров вещества это означает, что для запуска термоядерного синтеза вещество должно находиться под большим давлением и иметь высокую температуру.
Причём высокую – это мягко сказано: речь идёт о миллионах и даже десятках миллионов градусов. Для сравнения, самый жаростойкий материал, сегодня известный человечеству, а именно особый вид карбонитрида гафния (Hf-CN) имеет температуру плавления порядка 4000 градусов. Увы, это примерно в две тысячи раз меньше, чем нужно.
В принципе, мы уже умеем запускать термоядерные реакции в земных условиях – собственно, именно это происходит в термоядерных бомбах. Но там экстремальные давления и температуры возникают в эпицентре ядерного взрыва: огромная энергия выделяется за доли секунды, что отлично подходит для произведения чудовищных разрушений.
Но мирно собрать и использовать выделившуюся таким образом энергию сложновато: в термоядерном реакторе, в отличие от бомбы, энергия должна выделяться постепенно, небольшими порциями, то есть, быть устойчивой.
Устойчивые термоядерные реакции вполне прекрасно идут, например, в недрах звёзд, в том числе нашего Солнца – именно благодаря выделяющейся в результате этих реакций энергии оно и светит. Однако там экстремальные условия (температура и давление) возникли в результате гравитационного сжатия колоссальных масс вещества. Гравитация системы также обеспечивает устойчивость реакции.
Солнечная топка
В Солнце основым видом термоядерной реакции является многоступенчатое превращение водорода в гелий.
Сначала два атома водорода – по сути, обычные протоны – сливаются в нестабильную систему под названием дипротон, т.е. пару протонов, он же изотоп гелий-2. Этот изотоп крайне нестабилен и распадается в среднем через миллиардную долю секунды. Но иногда за это время один из протонов может спонтанно превратиться в нейтрон, и тогда дипротон превратится в стабильный тяжёлый водород – дейтерий (1 протон, 1 нейтрон).
Впоследствии дейтерий поглощает ещё один протон, превращаясь в стабильный изотоп гелий-3 (2 протона, 1 нейтрон). Затем два ядра гелия-3 сталкиваются, в результате чего образуется «нормальный» гелий-4 (два протона, два нейтрона), а два «лишних» протона улетают прочь.
На каждом из этих этапов выделяется энергия, благодаря которой, повторимся, и светит Солнце.
Однако на Земле осуществить подобный цикл невозможно по ряду причин.
Превращение дипротона в дейтерий – процесс вероятностный, причём вероятность того, что это случится, на самом деле невелика с учётом малого времени жизни дипротона. Для того, чтобы такая реакция шла и давала выход энергии, нужны колоссальные массы вещества. Но это полбеды, можно было бы работать, скажем, с уже готовым дейтерием (он в достаточных количествах содержится в любом количестве водорода, например, того, который можно получить из простой воды). К сожалению, это не единственная сложность.
Например, можно вместо гравитации использовать для обжатия и нагрева термоядерного топлива электромагнитные поля.
Например, можно поместить топливо в специальную конструкцию в виде полого тора (проще говоря, бублика) покрытую проводящей обмоткой. Если через эту обмотку пропускать электрический ток, то возникнет магнитное поле, которое сдавливать плазму, обжимая её от краёв канала к центру и удерживая в своеобразной магнитной ловушке без непосредственного контакта материалов реактора с раскалённым веществом.
В результате – в теории – можно в земных условиях реализовать температуры и давления, характерные для звёздных недр и запустить термоядерный синтез. Именно такие конструкции «бубликовидных» реакторов сегодня являются мейнстримом термоядерных исследований. Хотя существуют и другие перспективные схемы компоновки реакторов.
На практике же реализовать всё это достаточно сложно, ведь находящееся в столь экстремальном состоянии вещество обладает особенностями поведения, в которых мы пока что недостаточно хорошо разбираемся. И сейчас тысячи учёных по всему миру усиленно работают над тем, чтобы приручить электромагнитные поля и раскалённое вещество, заставив их подчиняться нашей воле.
На пути к искусственному Солнцу
В настоящий момент мы уже научились инициировать «медленную» реакцию в смеси вышеупомянутого дейтерия (1 протон, 1 нейтрон) с тритием (1 протон, 2 нейтрона, т.н. сверхтяжёлый водород).
В результате такой реакции образуется ядро гелия (2 протона, 2 нейтрона). Но в исходных ядрах два протона и три нейтрона, то есть, образуется «лишний» нейтрон, который улетает прочь. А это плохо.
Во-первых, с собой этот нейтрон уносит значительную (80 %) часть энергии, вырабатываемой при реакции синтеза, что сильно уменьшает её КПД.
Во-вторых, нейтронный поток негативно влияет на конструктивные свойства сооружений реактора, разрушая их. То есть, необходимо придумать и использовать какие-то «нейтронно-устойчивые» материалы.
Наконец, в-третьих, тритий очень дорог: его стоимость – 30 тысяч долларов за грамм. При сжигании в реакторе 1 грамма дейтериево-тритиевой смеси выделится энергия, эквивалентная сжиганию примерно 20 тонн угля стоимостью примерно в 2 тысячи долларов. И это без учёта того факта, что в дейтериево-тритиевой схеме мы сможем собрать лишь небольшую часть выделившейся энергии. Поэтому дейтериево-тритиевое топливо вряд ли пригодно для использования в качестве практического источника энергии, и работающие на нём реакторы имеют прежде всего научное значение: в их можно изучить и освоить технологии «управления» раскалённым газом (плазмой), полноценное овладение которыми откроет путь к использованию других видов топлива и реакций.
Например, если бы удалось создать условия, в которых сможет протекать более требовательная к ним реакция между атомами только дейтерия (без трития), то это уже вывело бы перспективы термоядерной энергетики на совершенно новый уровень. Увы, пока мы их запускать не умеем.
Ещё более интересны так называемые безнейтронные схемы: реакции, не приводящие к возникновению «паразитного» нейтронного потока. Например, использование из дейтерия и гелия-3 (2 протона, 1 нейтрон), дающие на выходе «полноценный» гелий-4 (2 протона, 2 нейтрона) и «лишний» протон.
К сожалению, гелий-3 на Земле практически не встречается, и его надо либо получать искусственно (возможно, но дорого, хотя и дешевле трития), либо можно привезти с Луны, где его по идее много. Какой путь окажется дешевле –пока неясно (космические технологии тоже не стоят на месте!), но сначала нужно научиться нормально работать с раскалённой плазмой.
Именно для этого, к слову, строят крупнейший в истории термоядерный реактор ITR во Франции: в строительстве принимают участие Россия, Казахстан, США, ЕС, Китай, Индия, Япония и Южная Корея – уже сам состав участников свидетельствует о масштабе проекта. ITR вряд ли будет давать «коммерческую» энергию, но позволит отработать все необходимые для этого технологии для применения в будущем.
Существует и альтернативный подход: так называемые импульсные термоядерные реакторы, в которых не предполагается поддерживать постоянные условия солнечного ядра, а создавать их на краткое время – достаточное, впрочем, для того, чтобы какая-то часть термоядерного топлива успела прореагировать. В таких реакторах небольшие объёмы топлива быстро «сплющиваются» мощными лазерами или потоками заряженных частиц высоких энергий.
Импульсные реакторы являются конкуретами проектов вроде ITR – какая из конструкций первой «придёт к финишу» покажет время.