что стало основой для создания crispr cas систем
CRISPR/CAS9: что значит для человечества переход от чтения генома к его редактированию?
Технология CRISPR / Cas9, позволяющая вносить изменения в геном высших организмов (в том числе человека) стала в последние годы одной из самых обсуждаемых — не только молекулярными биологами, но и биотех-инвесторами, медиками, социологами — тем. Все дело в том, что CRISPR/Cas9 потенциально имеет перспективы применения для борьбы с многими тяжелыми заболеваниями, среди которых рак, наследственные болезни, ВИЧ. Если раньше генетические технологии применялись в первую очередь для диагностики, то теперь мы впервые подошли к новому рубежу — у нас есть инструмент редактирования ДНК, который, возможно, получит все больше внедрений в клиническую практику и программы лечения. Хотя ранее попытки редактирования генома уже были (например, для больных лейкемией) именно CRISPR/Cas9, как более универсальный инструмент, претендует на создание инструментов для все более активных внедрений. Старт дан: в Китае уже делают первые шаги в клинических испытаниях технологий, основанных на CRISPR/Cas9. Растущие возможности генной терапии ставят перед нами все больше вопросов, связанных с этикой. Чего ждать?
CRISPR/ Cas 9 — «ножницы» вместо «ножа» для ДНК
Способы редактирования генов в геномах живых существ изучаются с начала XX века – еще с открытия механизма индуцированного мутагенеза (то есть вызванного воздействием каких-нибудь внешних агентов – например, радиоактивного излучения или химических веществ). И если для бактерий механизмы достаточно точного модифицирования генов разработаны еще в середине XX века, то для более сложных организмов, в частности, человека, подходы появились лишь в конце прошлого века. Например, целое семейство вирусов, называемое ретровирусами (к которым относится и ВИЧ, вызывающий СПИД у человека), от природы получило механизм, согласно которому для функционирования вируса требуется встраивание его генома в геном организма-хозяина. Путем введения модификаций в геном ретровируса, то есть вставки измененных человеческих генов, можно добиться внедрения в геном хозяина таких квазичеловеческих элементов – вот и готовый механизм геномного редактирования. Существенным его недостатком является отсутствие специфичности встраивания, то есть вирусный геном может попасть в любой участок генома хозяина, а может и вообще не попасть. Для научных изысканий это нестрашно – всегда можно повторить эксперимент. Но для целей лечения конкретных пациентов подход с «повторить», как правило, не работает.
Другие способы модификаций генома связаны с технологиями ZFN и TALEN, активно обсуждаемые начиная с 2000-х годов. Идея этих подходов основана также на природных свойствах определенных белков, называемых нуклеазами. Эти активные белки (ферменты) умеют проводить специфическое, неслучайное вырезание участка исходного генома и встраивание в место разреза привнесенного с собой кусочка исправленной ДНК. Такой способ позволяет проводить целевую, гораздо более точную, чем просто ретровирусная, модификацию «сломанных» генов. Отличие ZFN и TALEN заключается в использовании разных видов ферментов, но итог их работы примерно одинаков.
В 2015 году технологию ZFN удалось успешно применить для терапии ВИЧ: в стволовых клетках донора был отредактирован участок, отвечающий за восприимчивость ВИЧ, затем они были трансплантированы пациенту. Стоит отметить, что примерно у каждого тысячного европейца имеется такой генотип, который гарантирует невозможность внедрения вириона (активной вирусной частицы, которая осуществляет заражение) внутрь клеток организма-хозяина, то есть невозможность инфицирования.
Но ZFN и TALEN оказались далеки от массового применения в медицине. Ученые пытались научить их узнавать специфическую, в идеале — любую заданную последовательность ДНК для «кусания». Иногда это работало, но для каждой последовательности приходилось создавать свой отдельный белок, а это кропотливая и долгая работа.
Пока неочевидно, какие технологии геномного редактирования будут наиболее активно применяться в медицине уже через 10 лет. Возможно, это будет CRISPR/ Cas 9 или текущие аналоги, а может быть, будет открыта новая технология, которая возникнет так же неожиданно и ярко, как CRISPR/ Cas 9.
А пока между двумя научными группами, которые в 2012 году одновременно нашли способ применения CRISPR/Cas9 для точечного редактирования геномов сложных организмов, идет патентная война. Группа в Калифорнийском университете в Беркли и группа из MIT и Broad Institute (институт MIT и Гарварда), подавшие заявки на патент в разное время в 2013 году, тратят десятки миллионов долларов на юристов и вряд ли остановятся — на кону миллиарды долларов, которые может принести технология. По прогнозам, патентный офис примет решение в 2017 году.
Применение и этические вопросы
Среди потенциальных применений новой технологии — лечение наследственных заболеваний (гемофилия, бета-талассемия, мышечная дистрофия), терапия онкологии и вирусных инфекций, включая ВИЧ.
Но есть и более экзотические потенциальные применения. Например, борьба с мультифакторными заболеваниями (диабет, шизофрения и др.) или редактирование эмбрионов при искусственном оплодотворении для подбора определенной внешности у детей. Именно здесь возникает множество этических вопросов, которые начали обсуждаться, но пока так и не получили консенсусного решения у мирового сообщества. Когда же можно, а когда нельзя применять редактирование генома? Пока, в отсутствие у человечества единой позиции, каждая из стран решает это по-своему.
Например, мир потрясли уже два исследования китайских ученых. В 2015 году группа китайских ученых применила геномное редактирование на 86 человеческих эмбрионах для того, чтобы изменить мутации, вызывающие тяжелую наследственную патологию бета-талассемию. Это тяжелая наследственная патология, которая связана с нарушением синтеза гемоглобина и разрушением эритроцитов, средняя продолжительность жизни носителей мутации — 17 лет. Несмотря на серьезную научную значимость исследования китайских ученых, два главных научных журнала Nature (Великобритания) и Science (США) отказались публиковать результаты, в частности из-за этических вопросов. Также это исследование показало неидеальность технологии CRISPR/Cas9, по крайней мере на данный момент. Из 86 эмбрионов точно поменять желаемый участок ДНК получилось только у 28. Процент ошибки оказался больше, чем ожидали исследователи исходя из опытов над эмбрионами животных. Какой участок ДНК нужно редактировать, определяется при помощи синтетической последовательности РНК (так называемый «гид»). Она комплементарна нужному участку ДНК. Но может оказаться, что в другой части генома также есть аналогичная последовательность нуклеотидов.
Исследование вызвало множество дискуссий. Должны ли западные страны очень аккуратно относиться к этическим вопросам при применении новых технологий геномного редактирования, либо же это приведет только к отставанию от Китая? По всей видимости, пока Запад рассматривает возможность терпимее относиться к генетическим модификациям — менее чем через полгода после скандальной публикации китайских исследователей в Великобритании были официально разрешены первые опыты по геномному редактированию эмбрионов человека, в Лондоне новые группы ученых уже ведут работу над дизайном новых экспериментов.
А в середине ноября группа китайских ученых анонсировала применение генной модификации клеток при помощи CRISPR/Cas9 для лечения пациента с агрессивным раком легкого. В журнале Nature эта статья анонсирована с подзаголовком: «Шаг китайских ученых может разжечь борьбу между Китаем и США в сфере биомедицины». Мир ждет результатов второго исследования китайских ученых.
Однако в будущем этических вопросов, связанных с новыми технологиями в области генетики и репродукции, будет еще больше. Биоэтика становится все более важной дисциплиной.
Например, у некоторых европейцев есть мутации в гене CCR5 — ее носители практически невосприимчивы к ВИЧ. В рамках генетического тестирования эти мутации могут быть исследованы. Но этично, корректно ли рассказывать человеку о наличии такой мутации? Мы, как компания, которая занимается генетическими тестами, решили, что нет.
Другие проблемы связаны с тем, что возможности генетического редактирования меняют само понятие семьи. С появлением искусственного оплодотворения и суррогатного материнства в принципе понимание института семьи усложнилось. Теперь у некоторых детей помимо отца могут быть две матери: суррогатная и «юридическая». А если для зачатия используются яйцеклетка и сперматозоид пары, которые затем переносятся в суррогатную мать, у ребенка тоже две матери — генетическая и суррогатная. Теоретически возможны ситуации, когда юридическая, генетическая и суррогатная мать — это три разных человека.
Юридические нюансы, возникающие в подобных случаях, уже получают оценки. Например, « Baby M Case »: у Элизабет Стерн был рассеянный склероз, который несет много рисков при беременности, поэтому семья Стерн обратилась в один из медицинских центров в Нью-Йорке для суррогатного материнства. Использовался генетический материал отца. Между сторонами был подписан договор, что юридическими родителями будут Стерны. Но вскоре после рождения суррогатная мать Мэри Бет Вайтхед под угрозой суицида потребовала вернуть ей ребенка. В дело включились полиция и суд. В итоге суд признал Стернов официальными родителями ребенка, но дал суррогатной матери возможность посещения ребенка. Интересно, что основной мотивацией суда было преследование «лучших интересов ребенка». В другой схожей истории, тоже произошедшей в Нью-Йорке, суд рассудил иначе: двое родителей лучше трех, решил суд, отказав в правах посещения ребенка суррогатной матери. Есть деталь: во втором случае пара использовала собственные яйцеклетку и сперму, которые были перенесены в суррогатную мать.
«Офшоры» для геномного редактирования
Недавно мир потрясло рождение ребенка от трех генетических родителей: в апреле 2016 года появился на свет ребенок, зачатие которого происходило с использованием митохондриальной ДНК третьего человека. Такая процедура была необходима, так как у матери ребенка есть патогенные мутации в митохондриях (органеллы внутри клеток человека, отвечающие за обеспечение клеток энергией, обладают собственным небольшим геномом, передаются ребенку от матери), которые могли привести к появлению у ребенка синдрома Лея, наследственному заболеванию, связанному с поражением ЦНС и энцефалопатией. Два первых ребенка матери погибли от синдрома Лея. Американский врач Джон Чанг, из клиники в Нью-Йорке вместе с родителями из Иордании прибыли в Мексику. И в Иордании, и в США подобные модификации генетического материала были запрещены.
Получается, в современном мире появляются «биомедицинские офшоры». Люди едут в страны с лояльным законодательством для осуществления процедур, неоднозначных с точки зрения этики и допустимости законодательством той или иной страны. Генная терапия уже становится в центре подобных «спорных» случаев. Например, американка Лиз Пэрриш утверждает, что прошла в Колумбии процедуру по редактированию специальных участков ДНК-теломер при помощи вируса. Длина теломер коррелирует со старением. Пэрриш стала первым человеком, решившимся на генетическую терапию для борьбы со старением, до нее эксперименты проводились только на животных. Научное сообщество отнеслось к самовольным клиническим испытаниям Пэрриш неоднозначно, многие подвергли ее действия критике.
В целом на данный момент мировое сообщество с очень большой осторожностью относится к редактированию генома, когда оно не связано напрямую с лечением тяжелых заболеваний, которые нельзя вылечить иным способом. Дело в том, что технологии еще несовершенны и не максимально специфичны. Так, в уже упомянутом эксперименте китайских ученых над эмбрионами в ДНК многих эмбрионов изменились не только участки, которые планировали изменить ученые, но и другие, случайные. Или, например, когда во Франции генную терапию решили применить для лечения врожденного X-сцепленного иммунодефицита, в ходе клинического испытания неожиданно в качестве побочного эффекта у больного развилась лейкемия.
Ребенок на заказ
В целом медицинское и научное сообщество сейчас более лояльно к генной терапии, которая будет влиять только на генетический материал самого человека. Генные модификации, которые передавались бы детям, все еще изучены недостаточно и остаются в «серой зоне». Но в определенной степени выбор определенных черт ребенка с помощью генетических технологий доступен уже сейчас.
В ходе искусственного оплодотворения можно пройти процедуру преимплантационной генетической диагностики или преимплантационного генетического скрининга. При ЭКО (искусственном оплодотворении, вне тела матери, с последующим переносом 2-5-дневного эмбриона в полость матки) на сегодняшний день оплодотворяется несколько яйцеклеток. Можно исследовать геном каждой из них и выбрать наиболее «подходящие» эмбрионы. Такая процедура уже довольно активно используется для профилактики тяжелых наследственных патологий у семей с соответствующими рисками. Однако данная технология, очевидно, может быть применена для выбора черт, не связанных со здоровьем — например, цвета глаз или волос. Это, безусловно, несколько пугающая ситуация, заставляет задуматься о способах применения новых генетических технологий для евгеники, для других манипуляций, описанных фантастами в антиутопиях. Разные страны уже вырабатывают позицию по влиянию родителей на генетические данные своих детей.
В Китае, например, запрещено использование преимплантационной генетической диагностики для выбора пола будущего ребенка. Но такая процедура не запрещена в Штатах. Но волнуют китайцев этические вопросы или для подобного законодательного регулирования важнее демографические причины — большой вопрос.
Но важно, чтобы свои взгляды на границы генетических вмешательств сформировали не только правительства, но и обычные люди. Иначе мы рискуем оказаться в ситуации неосведомленности населения о базовых принципах генетических технологий и распространения предрассудков. Недавняя волна заявлений об опасности ГМО для человека — яркое тому подтверждение. Один из опросов в Казани, например, показал, что почти половина респондентов считают, что «любые пищевые продукты, содержащие гены», должны быть изъяты из продажи и не должны импортироваться или производиться в стране. Очевидно, что гены есть в любом живом организме, так что такие результаты исследования просто плачевны. Впрочем, 15% опрошенных честно признались, что не представляют себе, что такое ГМО. Ученым, биомедикам и просто тем, кто верит в то, что технологии делают нашу жизнь лучше, теперь нужно сделать все, чтобы генетическое редактирование человека не столкнулось с той же волной необоснованной паники, а стало действительно эффективным инструментом в борьбе с болезнями.
От слов к делу: технологию CRISPR-Cas впервые применили для лечения онкозаболеваний
Модифицированные с помощью CRISPR-Cas9 иммунные клетки получают возможность лучше атаковать опухоль.
Автор
Редакторы
Технология CRISPR-Cas9, позволяющая редактировать геномы высших организмов, — сверхпопулярная тема обсуждений, касающихся перспективных направлений лечения многих тяжелых заболеваний, таких как ВИЧ, различные наследственные и онкозаболевания. Настоящая гонка, развернувшаяся между китайскими и американскими исследователями, ставит своей целью внедрение технологии в клиническую практику и проверку ее эффективности в лечении пациентов. Недавно Китаю удалось вырваться вперед в этом состязании, впервые произведя пациенту аутологичную трансплантацию иммунных клеток, отредактированных с помощью CRISPR-Cas9 и запрограммированных на борьбу с опухолью. Важность этого события для будущего технологий геномного редактирования в медицине специально для «Биомолекулы» прокомментировал Павел Волчков — заведующий лабораторией геномной инженерии МФТИ.
Биология в Московском физтехе
XXI век называют «веком живых систем», изучение которых возможно только на стыке наук — математики, физики, химии и биологии. «Биомолекула» представляет серию материалов о том, как занимаются биологией в Московском физико-техническом институте (МФТИ).
Заведующий лабораторией — Павел Волчков — прокомментировал для «биомолекулы» некоторые из громких открытий и разработок в этой области. Но сначала расскажем подробнее, о чем же речь.
Откуда мы знаем про CRISPR-Cas9?
В качестве высокоточного инструмента редактирования ДНК технология CRISPR-Cas9 была разработана в 2012–2013 годах [2]. Однако знакомство исследователей с молекулярным механизмом, ставшим основой «умных ножниц для ДНК», случилось гораздо раньше и было обязано бактериям, а именно защитному механизму, позволяющему им выходить победителями из встречи с вирусами и другими патогенами.
В основе этого механизма лежат особые участки генома — CRISPR, обнаруженные впервые в 1987 году Ёсидзуми Исино у кишечной палочки (Escherichia coli) [3] и представляющие собой одинаковые повторяющиеся последовательности (CRISPR, clustered regularly interspaced short palindromic repeats), чередующиеся с уникальными участками (спейсерами). Эти уникальные последовательности — «фотоальбом», в котором бактерия хранит «фотографии» всех патогенов, ранее встреченных ею или ее предками. Благодаря этим «фотографиям» при будущих встречах с данными патогенами бактерия имеет высокие шансы вовремя распознать их и обезоружить. Помогают ей в этом специальные комплексы белков Cas, ассоциированные в геноме с CRISPR-локусами и участвующие в уничтожении чужеродного генетического материала, а также помогающие добавлять и запоминать фотографии новых патогенов, попадающих в клетку. Осуществляется это запоминание за счет вырезания характерного для данного патогена участка ДНК и встраивания его в виде нового спейсера в геном бактерии (подробности этого механизма приведены в детальном обзоре [4] и симпатичной инфографике [5]).
Превращение механизма бактериального иммунитета в инструмент редактирования геномов высших организмов потребовало решения ряда сложных задач, связанных, главным образом, с повышением точности определения участка ДНК, который распознается и вырезается комплексом белка Cas9 со специальной молекулой РНК, служащей для белка гидом к этому участку. Однако труды генных инженеров увенчались успехом и уже к 2013 году позволили создать удобный способ доставки молекулярного комплекса CRISPR-Cas9, который был опробован на культуре человеческих клеткок [6]. Будучи успешно испытанной на клетках многих модельных организмов и доказав свою эффективность на этой стадии, технология CRISPR-Cas9 приковала всеобщее внимание как перспективный инструмент в клинической практике для лечения многих заболеваний, включая наследственные и онкозаболевания. На настоящий момент развитие технологии вплотную подошло к проверке ее эффективности в клинических испытаниях.
Первый рывок в гонке клинических испытаний CRISPR-Cas
О подготовке к проведению клинических испытаний технологии CRISPR-Cas9 заявили сразу две исследовательские группы — из Китая и США. В этой биомедицинской гонке, прозванной с легкой руки американского иммунолога Карла Джуна «Спутник 2.0», китайской группе удалось вырваться вперед на самом старте, впервые сделав пациенту инъекцию, содержащую его собственные иммунные клетки, отредактированные с помощью CRISPR-Cas9 для борьбы с агрессивным раком легких [7]. Исследователи отобрали Т-лимфоциты пациента и вырезали в них ген, кодирующий белок PD-1 (Programmed cell death 1), затормаживающий иммунный ответ и дающий опухолевым клеткам возможность избежать инактивации, уходя из-под надзора иммунной системы. После редактирования клетки с измененным геномом культивировали в присутствии цитокинов, а затем инъекционно вводили обратно пациенту с расчетом на то, что отредактированные клетки будут эффективнее уничтожать клетки опухоли. Данный подход представляет собой редактирование клеток пациента ex vivo и является одним из возможных для использования в терапии (рис 1). Стоит отметить, что ингибирование PD-1 — уже устоявшийся подход в иммунотерапии многих опухолевых заболеваний [8], [9]. На настоящий момент зарегистрировано более 170 клинических испытаний, направленных на проверку новых ингибиторов PD-1.
Рисунок 1. In vivo и ex vivo подходы к использованию CRISPR-Cas9 в генной терапии. Китайские исследователи использовали ex vivo подход к редактированию клеток пациента. Однако он — лишь один из двух возможных вариантов лечения патологий с помощью CRISPR-Cas9. а — In vivo CRISPR-Cas9-система доставляется прямо в организм пациента с использованием специальных векторов вирусного или не вирусного происхождения и позволяет произвести редактирование в организме самого пациента. б — Ex vivo редактированию с помощью CRISPR-Cas9 подвергаются, например, соматические стволовые или прогениторные клетки, которые были первоначально взяты у пациента. После редактирования клетки с измененным геномом отбирают, растят в культуре и трансплантируют (инъецируют) обратно пациенту.
Детальные результаты проведенного китайскими исследователями испытания пока не сообщаются, однако уже заявлено, что пациенту была произведена вторая инъекция. Также авторы поделились своими планами по проведению дальнейших испытаний с участием еще 10 пациентов. Каждому из них планируется произвести от двух до четырех инъекций, а затем всех будут тщательно наблюдать в течение последующих шести месяцев для выявления возможных серьезных негативных последствий. Независимо от первого успеха китайских коллег, американские исследователи еще в июле заявили о готовности развернуть в 2017 году масштабные клинические испытания с использованием CRISPR-Cas9 против рака простаты, почек и мочевого пузыря. Старт запланирован на начало 2017 года.
Уникальна ли CRISPR-Cas в качестве технологии геномного редактирования?
Несмотря на явное преимущество по уровню информационного освещения, технология CRISPR-Cas9 не является единственной технологией редактирования ДНК, которая может использоваться для лечения реальных заболеваний.
В 2014 году американские исследователи впервые провели испытания технологии с использованием ферментов, имеющих домены «цинковые пальцы» (Zinc-finger nucleases, ZFNs), на пациентах с ВИЧ. Испытания проводили на 12 пациентах с целью избавить иммунные клетки от гена ССR5, уменьшающего их резистентность к ВИЧ [11]. Исследователи постарались вырезать этот ген в Т-лимфоцитах, поскольку белок ССR5 служит для вируса в качестве «пропускного пункта» в эти клетки, и люди, имеющие мутации в гене ССR5, обладают устойчивостью к ВИЧ [12], [13]. В данных испытаниях иммунные клетки подверглись редактированию ex vivo, в ходе которого они были выделены из крови пациентов и отредактированы с использованием коммерчески доступных нуклеаз с «цинковыми пальцами».
Однако эффективность редактирования оказалась невысокой — только в 25% клеток редактирование нужного гена прошло успешно. Тем не менее после инъекции редактированных клеток в прогнозе пациентов были отмечены позитивные изменения — у всех 12 человек после прекращения антиретровирусной терапии уровень ВИЧ восстанавливался гораздо медленнее, чем в норме, а уровень Т-лимфоцитов оставался достаточно высоким в течение нескольких недель. Интересно, что у одного из пациентов уровень вируса не восстанавливался в течение целых 12 недель после остановки терапии. Авторы, исследовав геном пациента, обнаружили, что он имеет одну мутировавшую копию гена CCR5, что, по всей видимости, и позволило ему лучше сопротивляться вирусу по сравнению с другими пациентами. Несмотря на достигнутые положительные результаты, испытание данной технологии выявило ряд сложностей, делающих их использование в терапии затруднительным. Во-первых, это недостаточная точность редактирования ДНК в клетках пациентов. Во-вторых, в ходе испытания у пациентов отмечались некоторые малоприятные побочные эффекты, вызванные инъекцией. Например, не исчезающий в течение нескольких дней ужасный запах, исходящий от тел пациентов, возникающий вследствие метаболизма диметилсульфоксида (ДМСО), который используется в качестве криоконсерванта для клеточной культуры [14].
Однако последующие работы исследователей позволили улучшить технологию использования нуклеаз с «цинковыми пальцами», и на сегодняшний день компания Sangamo, впервые применившая ее для лечения пациентов, уже провела испытания на 80 пациентах и получила более обнадеживающие результаты.
Вторым видом технологии геномного редактирования стало использование фермента TALEN (Transcription activator-like effector nuclease) для спасения маленькой однолетней пациентки с лейкемией в Британии [15]. Испытать подобную технологию авторы исследования решились после того, как все остальные способы лечения ребенка потерпели неудачу. Исследователи использовали Т-лимфоциты, взятые у здорового донора, повысив их устойчивость к противоопухолевым препаратам и модифицировав с помощью технологии UCART (Universal Chimeric Antigene Receptor T-cells), позволяющей им атаковать опухолевые клетки, но не причинять вреда здоровым клеткам пациентки. Авторы признались, что инъекция подобных иммунных клеток с редактированной ДНК не позволяет однозначно вылечить заболевание, однако у пациента появляется шанс дождаться подходящего донора костного мозга. И в данном случае такой донор был найден. Модифицированные иммунные клетки позволили организму девочки побороть опухолевые клетки, а трансплантация — восстановить иммунную систему, сильно пострадавшую в ходе курса химиотерапии и борьбы с опухолью. Случай выздоровления юной пациентки получил широкий общественный резонанс и позволил технологиям редактирования генетической информации еще на шаг приблизиться к применению в клинической практике.
Комментарий Павла Волчкова, заведующего лабораторией геномной инженерии МФТИ
Рисунок 2. Павел Юрьевич Волчков, заведующий лабораторией геномной инженерии МФТИ
Первые шаги в виде первых клинических испытаний очень важны для внедрения технологии в клиническую практику. Они хорошо привлекают общественное внимание, что в свою очередь довольно хорошо стимулирует скорость интеграции технологии, а также увеличивает количество сопряженных разработок и позволяет привлечь дополнительное финансирование. Если смотреть на историю развития подходов к редактированию генома, то, начиная с 90-х годов, она будет идти плавно и поступательно с небольшими пиками, соответствующими тем или иным громким событиям, например, попыткам применения определенной технологии на пациентах. В 2014 и 2015 годах такими событиями стали первые применения ZNFs и TALEN для лечения пациентов с ВИЧ и лейкемией соответственно.
Сейчас мы наблюдаем, пожалуй, самый большой из пиков, и связан он с развитием системы CRISPR-Cas9. Если сравнивать интерес к применению всех трех технологий и расположить его на определенном ландшафте, то пик, происходящий сейчас с CRISPR-Cas9, это еще не «Гималаи», но уже как минимум «Альпы». Важно также понимать, что переход между этими «высотами» связан с нашими ожиданиями от технологии, а они имеют колебательный характер — интерес к продукту растет соответственно ее громким успехам и падает, если ожидания этих успехов сильно затягиваются. Примерно по такому же принципу изменяется и финансирование разработки технологии. В конечном итоге судьба каждого успешного продукта — это выйти на определенное плато, где компании, выпускающие его, начинают получать максимальную выгоду.
Если искать причины, почему именно CRISPR-Cas9 вызвал наибольший ажиотаж вокруг технологий редактирования генома, то стоит отметить следующие вещи. Во-первых, весь этот информационный бум был, действительно, хорошо сгенерирован. А во-вторых, технология CRISPR-Cas9 хороша благодаря своей исключительной универсальности. Она позволяет получить нуклеазу нужной вам специфичности в минимально короткое время по сравнению с ZNFs и TALEN. Это довольно сильное преимущество, поскольку специфичность и эффективность ферментов из всех трех технологий практически одинакова. Sangamo, пионеры в области создания нуклеаз «цинковых пальцев», оттачивали их дизайн десятилетиями, так что их специфичность ничуть не уступает другим нуклеазам. Однако здесь и кроется отличительная черта CRISPR-Cas9 — это возможность максимально быстро преодолевать стадию дизайна, практически в один шаг. Вы имеете возможность быстро создать десяток молекул-гидов для нуклеазы Cas9 и проверить их эффективность и специфичность на нужном вам участке ДНК. Дальнейшая доработка технологии примерно одинакова во всех трех случаях — это определения способа доставки системы в нужные клетки, проработка клинической составляющей и других сопутствующих технологий.
Важно понимать, что сам молекулярный механизм, производящий редактирование ДНК, это важная составляющая будущего клинического продукта, но одной ее недостаточно для того, чтобы лечить пациентов. В список сопутствующих технологий, необходимых для использования геномного редактирования в терапии, входят методы культивирования клеток, которые предполагается редактировать (например, Т-клетки иммунной системы), а также технологии доставки редактирующей молекулярной системы (например, использование вирусных векторов). Кроме того, развитие технологий геномного редактирования толкает вперед развитие приборостроения, поскольку машин, которые автоматически выполняли ли бы всю работу, связанную, например, с отобранными клетками, в клинике сейчас нет. Однако такие машины просто необходимы, поскольку нам важны время и автоматизация процесса для эффективной терапии.
Что же касается заболеваний, в лечении которых планируется попробовать использовать CRISPR-Cas9, то их список достаточно обширен. Editas — одна из крупнейших и многообещающих компаний, разрабатывающих клинические продукты на основе CRISPR-Cas9, — решила сфокусировать свое внимание на заболеваниях, лечение для которых на настоящий момент практически отсутствует или является недостаточно эффективным (см. таблицу).
Наши программы | Механизм редактирования | Способы доставки | Коммерческие права |
---|---|---|---|
Заболевания глаз | |||
Амавроз Лебера | NHEJ — небольшие делеции | AAV локальная инъекция | Editas |
Генетические и инфекционные заболевания глаз Синдром Ушера, вирус простого герпеса первого типа (HSV-1) | NHEJ | AAV локальная инъекция | Editas |
Редактирование Т-клеток | |||
Редактирование генов в Т-клетках для терапии рака | NHEJ | RNP ex vivo | Juno Therapeutics |
Дополнительные исследовательские программы | |||
Доброкачественные гематологические заболевания Бета-талассемия, серповидноклеточная анемия | HNJEJ & HDR | RNP ex vivo | Editas |
Генетические заболевания мышц Миодистрофия Дюшенна | NHEJ — малые и большие делеции | AAV или LNP | Editas |
Генетические заболевания легких Муковисцидоз | HNJEJ & HDR | AAV или LNP | Editas |
Генетические и инфекционные заболевания печени Дефицит альфа-1-антитрипсина | HNJEJ & HDR | AAV или LNP | Editas |
Основные клинические направления, которые Editas выбрала для исследований, можно разделить на три группы.
В дополнительную группу также можно выделить инфекционные заболевания, например, герпетическое поражение глаз, для которых существуют методы лечения, однако они недостаточно эффективны или подразумевают сильное хирургическое вмешательство.
Для всех групп заболеваний в качестве корректирующего механизма Editas планирует использовать технологии, основанные на разных способах репарации ДНК после ее разрезания Cas9. Эти технологии включают в себя такие механизмы репарации, как негомологичное соединение концов (non-homologous end joining, NHEJ) и гомологичную рекомбинацию (homology directed repair, HDR) [16].
Старт клинических испытаний намечен на 2017 год, и Editas — не единственная компания, заявившая о них. Подобные схемы будущих испытаний уже предложили другие крупные компании — Intellia Therapeutics и Crispr Therapeutics.
Никто не застрахован от ошибок
Несмотря на громкий успех китайских исследователей, менее чем через неделю это событие оказалось омрачено печальной новостью из США. В ходе клинический испытаний, проводимых компанией Juno Therapeutics по редактированию Т-лимфоцитов пациентов с острым лимфобластным лейкозом, двое пациентов скончались по причине проявившихся осложнений после трансплантации редактированных клеток. На данный момент FDA — Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (Food and Drug Administration) — приостановило испытания до полного выяснения обстоятельств и причин гибели пациентов. Некоторые эксперты предполагают, что данный прецедент может серьезно ограничить Juno в дальнейших разработках технологии CAR (chimeric antigen receptor) для модификации иммунных клеток онкопациентов.
Случившиеся последовательно успех и неудача использования CRISPR-Cas9 в клинических испытаниях — хороший пример того, насколько сложен путь вхождения технологий геномного редактирования в практику для лечения реальных пациентов. Отбросив весь информационный шум, объективно можно сказать, что говорить об эффективности технологии, а главное о ее безопасности — довольно рано. Пока у нас нет данных успешных клинических испытаний с участием большого числа пациентов, ажиотаж вокруг развивающейся генной терапии будет подкрепляться исключительно общественными ожиданиями, но никак не реальными клиническими показателями. Тем не менее наши ожидания от технологий геномного редактирования огромны, и на настоящий момент представить ближайшее будущее без этих технологий довольно сложно (см. видео).
Видео. «Генная инженерия изменит всё и навсегда».
видео сделала группа Kurzgesagt и перевёл портал Naked Science