что такое arcsin и arccos arctg arcctg

Арксинус, арккосинус, арктангенс и арккотангенс – начальные сведения

Задача, обратная нахождению значения синуса, косинуса, тангенса и котангенса данного угла (числа), подразумевает нахождение угла (числа) по известным значениям тригонометрических функций. Она приводит к понятиям арксинуса, арккосинуса, арктангенса и арккотангенса числа.

В этой статье мы дадим определения арксинуса, арккосинуса, арктангенса и арккотангенса числа, введем принятые обозначения, а также приведем примеры арксинуса, арккосинуса, арктангенса и арккотангенса. В заключение упомянем про аркфункции и покажем, как арксинус, арккосинус, арктангенс и арккотангенс связаны с единичной окружностью.

Навигация по странице.

Определения, обозначения, примеры

Арксинус, арккосинус, арктангенс и арккотангенс можно определить как угол и как число. Это связано с тем, что мы определили синус, косинус, тангенс и котангенс как угла, так и числа (смотрите синус, косинус, тангенс и котангенс в тригонометрии). Остановимся на обоих подходах к определению арксинуса, арккосинуса, арктангенса и арккотангенса.

Арксинус, арккосинус, арктангенс и арккотангенс как угол

Аналогично определяются арккосинус, арктангенс и арккотангенс.

В свете введенных обозначений, определения арксинуса, арккосинуса, арктангенса и арккотангенса числа можно записать более формально:

Теперь можно привести примеры арксинуса, арккосинуса, арктангенса и арккотангенса числа.

Арксинус, арккосинус, арктангенс и арккотангенс как число

Когда мы имеем дело с синусом, косинусом, тангенсом и котангенсом угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять как угол. Если же мы начинаем говорить про синус, косинус, тангенс и котангенс числа, а не угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять уже как число.

Источник

Обратные тригонометрические функции и их графики

Обратные тригонометрические функции — это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Расскажем подробно об этих четырех новых для нас функциях — обратных тригонометрических.

Например, арифметический квадратный корень из числа а — такое неотрицательное число, квадрат которого равен а.

Логарифм числа b по основанию a — такое число с, что

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения — это и Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: Решение этого уравнения — иррациональное число Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна И ясно, что это не табличное значение синуса. Как же записать решения?

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

А вторая серия решений нашего уравнения — это

Подробнее о решении тригонометрических уравнений — здесь.

Повторим определение еще раз:

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Мы готовы построить график функции

Как обычно, отмечаем значения х по горизонтальной оси, а значения у — по вертикальной.

Значит, областью определения функции y = arcsin x является отрезок

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями и

Как всегда при построении графика незнакомой функции, начнем с таблицы.

Строим график функции

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

1. Область определения

2. Область значений

Напомним, что графики взаимно обратных функций симметричны относительно прямой

Аналогично, определим функцию Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок

Арккосинусом числа a называется число , такое, что

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке

Обозначение: Область определения арккосинуса — отрезок Область значений — отрезок

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение:

Построим график функции

Заполним таблицу, пользуясь определением арккосинуса.

Вот график арккосинуса:

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

1. Область определения

2. Область значений

Эта функция общего вида — она не является ни четной, ни нечетной.

5. Функции и являются взаимно обратными.

Следующие — арктангенс и арккотангенс.

Арктангенсом числа a называется число , такое, что

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Дальше рассуждаем так же, как при построении графиков арксинуса и арккосинуса.

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала значение тангенса стремится к бесконечности? — Очевидно, это

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте

На рисунке — график функции

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

1. Область определения

2. Область значений

3. Функция нечетная.

4. Функция является строго возрастающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными — конечно, когда функция рассматривается на промежутке

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число , такое, что

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

1. Область определения

2. Область значений

4. Функция является строго убывающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными, если рассматривать на промежутке

Источник

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Для четкого понимания рассмотрим пример.

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Таблица синусов основных углов предлагает такие результаты значений углов:

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

— π 2— π 3— π 4— π 60π 6π 4π 3в г р а д у с а х— 90 °— 60 °— 45 °— 30 °0 °30 °45 °60 °a r c sin α к а к ч и с л о— π 2— π 3— π 4— π 60π 6π 4π 3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

Следуя из таблицы, находим значения арккосинуса:

π5 π 63 π 42 π 3π 2π 3π 4π 60в г р а д у с а х180 °150 °135 °120 °90 °60 °45 °30 °0 °a r c cos α к а к ч и с л оπ5 π 63 π 42 π 3π 2π 3π 4π 60

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α— 3— 1— 3 303 313
a r c t g a к а к у г о лв р а д и а н а х— π 3— π 4— π 60π 6π 4π 3
в г р а д у с а х— 60 °— 45 °— 30 °0 °30 °45 °60 °
a r c t g a к а к ч и с л о— π 3— π 4— π 60π 6π 4π 3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Нахождение значения arcsin, arccos, arctg и arcctg

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Источник

Основные формулы с арксинусом, арккосинусом, арктангенсом и арккотангенсом

Формулы с обратными тригонометрическими функциями: arcsin, arccos, arctg и arcctg

Ранее мы рассматривали обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс. Как и в случае с другими функциями, между ними существуют связи и зависимости, реализуемые в виде формул, которые можно использовать для решения задач.

Сейчас мы будем рассматривать основные формулы с использованием этих функций: какие они бывают, на какие группы их можно разделить, как их доказать и как решать задачи с их помощью.

Формулы котангенса арккотангенса, тангенса арктангенса, синуса арксинуса и косинуса арккосинуса

Для начала сгруппируем формулы, в которых содержатся основные свойства обратных тригонометрических функций. Мы уже обсуждали и доказывали их ранее, а здесь приведем, чтобы логика объяснения была более понятной и все формулы были в одной статье.

Указанное в них легко сформулировать из самих определений обратных тригонометрических функций числа. Если вы забыли, как найти, например, тангенс арктангенса, все можно посмотреть в этой формуле.

Формулы арккотангенса котангенса, арктангенса тангенса и арксинуса синуса и арккосинуса косинуса

Здесь все также более-менее очевидно, как и в предыдущем пункте: эти формулы можно вывести из определений арксинуса, арккосинуса и др. Единственное, на что нужно обратить пристальное внимание: они будут верны только в том случае, если a (число или угол) будут входить в указанный предел. В противном случае расчет по формуле будет ошибочен, и применять ее нельзя.

Как соотносятся между собой арксинусы, арккосинусы, арктангенсы и арккотангенсы противоположных чисел

В этом блоке мы сформулируем важное утверждение:

Обратные тригонометрические функции отрицательного числа можно выразить через арксинус, арккосинус, арктангенс и арккотангенс противоположного ему положительного числа.

Таким образом, если в расчетах нам встречаются эти функции для отрицательных чисел, мы можем от них избавиться, преобразовав их в аркфункции положительных чисел, с которыми иметь дело проще.

Формулы суммы: арксинус + арккосинус, арктангенс + арккотангенс

Они выглядят следующим образом:

Из написанного видно, что арксинус некоторого числа можно вывести с помощью его арккосинуса, и наоборот. С арктангенсом и арккотангенсом аналогично – они соотносятся между собой аналогичным образом.

Формулы связи между прямыми и обратными тригонометрическими функциями

Знать связи между прямыми функциями и их аркфункциями очень важно для решения многих практических задач. Как же быть, если у нас есть необходимость вычислить, к примеру, тангенс арксинуса? Ниже приведен список основных формул для этого, которые полезно выписать себе.

Теперь разберем примеры, как они применяются в задачах.

Решение

У нас для этого есть подходящая формула следующего вида: cos ( a r c t g α ) = 1 1 + α 2

Подставляем нужное значение: cos ( a r c t g 5 ) = 1 1 + ( 5 ) 2 = 2 6

Решение

Обратите внимание, что непосредственные вычисления приводят к аналогичному ответу: sin ( a r c cos 1 2 ) = sin π 3 = 3 2

Если вы забыли, как правильно вычислять значения прямых и обратных функций, вы всегда можете вернуться к нашим предыдущим материалам, где мы разбирали это.

Доказательства формул синусов арккосинуса, арккотангенса и арктангенса

sin 2 α + cos 2 α = 1 1 + c t g 2 α = 1 sin 2 α

У нас получилось, что мы выразили синус через необходимые аркфункции при заданном условии.

Далее во вторую вместо a ставим arctg a. Это формула синуса арктангенса.

Аналогично с третьей – если мы добавим в нее arcctg a, будет формула синуса арктангенса.

Все наши расчеты можно сформулировать более емко:

Следовательно, sin ( a r c t g α ) = t g ( a r c t g α ) 1 + t g 2 ( a r c t g α ) = α 1 + α 2

Следовательно, sin ( a r c t g α ) = 1 1 + t g 2 ( a r c t g α ) = 1 1 + α 2

Выводим формулы косинуса арксинуса, косинуса арктангенса и косинуса арккотангенса.

Их мы выведем по имеющемуся шаблону:

следует, что cos ( a r c t g α ) = c t g ( a r c c t g α ) 1 + c t g 2 ( a r c c t g α ) = α 1 + α 2

Доказательства формул тангенсов арксинуса, арккосинуса и арккотангенса

Теперь нам нужны формулы котангенсов арксинуса, арккосинуса и арктангенса. Вспомним одно из тригонометрических равенств:

Используя его, мы можем сами вывести необходимые формулы, используя формулы тангенса арксинуса, тангенса арккосинуса и тангенса арктангенса. Для этого понадобится поменять в них местами числитель и знаменатель.

Как выразить арксинус через арккосинус, арктангенс и арккотангенс и так далее

Мы связали между собой прямые и обратные тригонометрические функции. Полученные формулы дадут нам возможность связать и одни обратные функции с другими, то есть выразить одни аркфункции через другие аркфункции. Разберем примеры.

Здесь мы можем заменить арксинус на арккосинус, арктангенс и арккотангенс соответственно, и получить искомую формулу:

А так мы выразим арккосинус через остальные обратные функции:

Формула выражения арктангенса:

Последняя часть – выражение арккотангенса через другие обратные функции:

Теперь попробуем доказать их, опираясь на основные определения обратных функций и ранее выведенных формул.

Прочие формулы доказываются по аналогии.

В завершение разберем один пример применения формул на практике.

Решение

Прочие формулы с обратными функциями

Мы рассмотрели самые основные формулы, которые понадобятся вам при решении задач. Однако это не все формулы с аркфункциями: есть и ряд других, специфичных, которые употребляются нечасто, но все же их знание может быть полезно. Запоминать их особого смысла нет: проще вывести их тогда, когда они нужны.

Разберем одну из них, называемую формулой половинного угла. Она выглядит следующим образом:

Если угол альфа при этом больше нуля, но меньше числа пи, то у нас выходит:

Учитывая данное условие, заменяем упомянутый угол на arccos. В итоге наша предварительная формула выглядит так:

Отсюда мы выводим итоговую формулу, в которой арксинус выведен через арккосинус:

Мы перечислили не все связи, которые имеются между обратными тригонометрическими функциями, а лишь наиболее употребляемые из них. Важно подчеркнуть, что ценность имеют не столько сами сложные формулы, что мы привели в статье: заучивать их наизусть не нужно. Гораздо важнее уметь самому делать нужные преобразования, и тогда сложные вычисления не потребуется хранить в голове.

В продолжение темы в следующей статье мы рассмотрим преобразование выражений с арксинусом, арккосинусом, арктангенсом и арккотангенсом.

Источник

Что такое arcsin и arccos arctg arcctg

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

К понятиям арксинус, арккосинус, арктангенс, арккотангенс учащийся народ относится с опаской. Не понимает он эти термины и, стало быть, не доверяет этой славной семейке.) А зря. Это очень простые понятия. Которые, между прочим, колоссально облегчают жизнь знающему человеку при решении тригонометрических уравнений!

Сомневаетесь насчёт простоты? Напрасно.) Прямо здесь и сейчас вы в этом убедитесь.

Разумеется, для понимания, неплохо бы знать, что такое синус, косинус, тангенс и котангенс. Да их табличные значения для некоторых углов. Хотя бы в самых общих чертах. Тогда и здесь проблем не будет.

Что означает выражение

И всё.

arc sin 0,4
угол, синус которого равен 0,4

Как пишется, так и слышится.) Почти. Приставка arc означает дуга (слово арка знаете?), т.к. древние люди вместо углов использовали дуги, но это сути дела не меняет. Запомните эту элементарную расшифровку математического термина! Тем более, для арккосинуса, арктангенса и арккотангенса расшифровка отличается только названием функции.

Верно. Выражение arccos1,8 не имеет смысла. И запись такого выражения в какой-нибудь ответ изрядно повеселит проверяющего.)

Внимание! Элементарная словесная и осознанная расшифровка арков позволяет спокойно и уверенно решать самые различные задания. А в непривычных заданиях только она и спасает.

Например: что такое arcsin 0,5?

Или, более солидно, через радианы:

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Всё, можно забыть про арксинус и работать дальше с привычными градусами или радианами.

Если вы осознали, что такое арксинус, арккосинус. Что такое арктангенс, арккотангенс. То легко разберётесь, например, с таким монстром.)

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Достаточно сообразить, что:

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

и всё. Заменяем все арки на значения в радианах, всё посокращается, останется посчитать, сколько будет 1+1. Это будет 2.) Что и является правильным ответом.

Вот таким образом можно (и нужно) переходить от арксинусов, арккосинусов, арктангенсов и арккотангенсов к обычным градусам и радианам. Это здорово упрощает страшные примеры!

Частенько, в подобных примерах, внутри арков стоят отрицательные значения. Типа, arctg(-1,3), или, к примеру, arccos(-0,8). Это не проблема. Вот вам простые формулы перехода от отрицательных значений к положительным:

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg
что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg
что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg
что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Нужно вам, скажем, определить значение выражения:

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Это можно и по тригонометрическому кругу решить, но вам не хочется его рисовать. Ну и ладно. Переходим от отрицательного значения внутри арккосинуса к положительному по второй формуле:

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Внутри арккосинуса справа уже положительное значение. То, что

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

вы просто обязаны знать. Остаётся подставить радианы вместо арккосинуса и посчитать ответ:

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Ограничения на арксинус, арккосинус, арктангенс, арккотангенс.

Грамотный человек знает, что синус равен 0,5 не только у угла 30°! Так как:

С этими ограничениями надо разобраться основательно. Тем более, что это дело простое.) Запоминаем:

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

что такое arcsin и arccos arctg arcctg. Смотреть фото что такое arcsin и arccos arctg arcctg. Смотреть картинку что такое arcsin и arccos arctg arcctg. Картинка про что такое arcsin и arccos arctg arcctg. Фото что такое arcsin и arccos arctg arcctg

Запомнить эти диапазоны очень легко по картинкам. Тригонометрический круг вам в помощь!) Для арксинуса:

Теперь, я думаю, понятно, что arcsin 0,5 = 30°. И только 30°! Так как углы 150°, 390°, 510° и т.д., которые тоже дают синус, равный 0,5, арксинусами быть не могут. Они выпадают из разрешённого диапазона.

Уже проще, правда?) Ну и, аналогичная картинка для арккосинуса и арккотангенса (при наведённом курсоре):

Надеюсь, зрительная память вас спасёт, если что. )

Вопрос резонный. В математике просто так, чисто для красоты, ничего не бывает. Только по острой необходимости!) А вы попробуйте ответить на такой вопрос:

У какого угла синус равен 0,4?

Для ответа в градусах или радианах вам придётся открывать таблицы Брадиса, или включать солидный калькулятор. Искать там значение синуса, равное (примерно!) 0,4 и смотреть, какой же угол имеет этот синус. После тяжких трудов вы определите, что это угол примерно 23 градуса и 36 минут. Про радианы я вообще молчу. )

Если вы осознали этот забавный факт, то легко ответите на все подобные вопросы:

А можно записать (приблизительно) тот же самый угол через градусы. Это будет:

23,57817847820183110402. °

Осознали простой и важный смысл арков? Тогда порешаем самостоятельно. Примерчики от устных до хитрых.)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *