Что такое черновая заготовка
Обработка черновых заготовок
Черновыми называют заготовки, имеющие припуск на усушку, строгание и торцовку. Чистовыми – заготовки, обработанные применительно к заданным размерам, имеющие базисные поверхности, расположенные под прямым углом одна к другой.
Черновые заготовки получаются в результате раскроя пиломатериалов и имеют в общем случае неправильную форму. У досок и брусков наблюдается поперечное и продольное коробление. Для надлежащей обработки деталей необходимо в первую очередь придать заготовке совершенно правильную форму, точные размеры и гладкую поверхность. Для этого необходимо выполнить следующие технологические операции: создание чистовых баз, обработка в размер по сечению и чистовое торцевание.
Точная обработка возможна только при наличии у заготовок чистовых баз, при помощи которых они могут быть точно установлены на станке для обработки. Для создания у заготовок чистовых базовых поверхностей пользуются в основном фуговальными станками (рис. 10.11). Фуговальные станки могут быть одно- и двухсторонними.
Рис. 10.11 Схема работы фуговального станка
На двухсторонних фуговальных станках обрабатывают одновременно две смежные стороны заготовки, расположенные под прямым углом друг к другу. Целью обработка на фуговальных станках – создание одной или двух смежных базовых поверхностей с получением между ними прямого или заданного угла. Нормальная заготовка полностью фугуется в среднем за два прохода. Толщина снимаемого слоя древесины – 1,5…2 мм.
Фуговальные станки c ручной подачей малопроизводительны, поэтому для фугования широких пластей крупных заготовок можно применять механическую подачу. Применяются следующие марки станков: СФ4-1Б (Россия) (рис. 10.12), Robland XSD-310 (Бельгия), ROJEK SD-B-510, ROJEK RFS410 (Чехия) (рис. 10.13), GRIGGIO COPMACT PF 41 (Италия) и др.
Рис. 10.12 Односторонний фуговальный станок с ручной подачей СФ4-1Б
Рис. 10.13 Фуговальный односторонний
станок ROJEK RFS410
Чтобы обработать заготовку в размер по толщине, необходимо отфуговать ее вторую сторону, параллельную первой и расположенную от нее на определенном расстоянии. Такая обработка может быть выполнена по схеме: заготовка базируется обработанной стороной на плоскости и при поступательном движении на ножевой вал, расположенный на другой плоскости, параллельной первой, обрабатывается вторая сторона заготовки.
Чтобы обработать заготовку в размер по толщине и создать у нее параллельность сторон, применяются рейсмусовые станки (рис. 10.14).
Рис. 10.14 Схема работы рейсмусового станка:
1 – ножевой вал; 2 – стружколоматель; 3 – прижимная колодка; 4 – подающий рифленый валик; 5 – подающий гладкий валик; 6 – опорные валики; 7 – когтевая завеса
Наиболее широко распространены в промышленности односторонние рейсмусовые станки марок СР6-10 (Россия), СР8-2, ВЗ-350 (Беларусь), D-510 и D 630 фирмы ROBLAND (Бельгия), Griggio PS 43 (Италия) (рис. 10.15) и др. Также существуют двусторонние рейсмусовые станки С2Р8-2 и PRJG30 фирмы ROBLAND (Бельгия) и др. Последний снабжен предохранительным микровыключателем, индикатором размера заготовок, аспирационным колпакам, магнитной системой установки ножей, дробилкой отходов на подаче и выходе, цифровым программным управлением.
Рис. 10.15 Односторонний рейсмусовый станок Griggio PS 43
Высокая производительность при обработке заготовок с трех-четырех сторон получается на четырехсторонних строгальных станках (рис. 10.16). Наиболее распространены станки марок С16-4А, С20-2М, С25-2А (Россия), Weinig UNIMAT 23 EL (рис. 10.17), Weinig PROFIMAT-26S (Германия) и др. Эти станки имеют механическую подачу (вальцовую или гусеничную) и не менее четырех ножевых валов: два горизонтальных (верхний и нижний) для обработки пластей и два вертикальных – для обработки кромок заготовки. Большое распространение стали получать станки, сочетающие в себе фуговальный и четырехсторонний фрезерный.
Рис. 10.16 Схема четырехстороннего продольно-фрезерного станка:
1 – цепной конвейер; 2 – вертикальные ножевые головки; 3 – нижний ножевой вал; 4 – верхний ножевой вал; 5 – подающие валики; 6 – прижимы
Рис. 10.17 Четырехсторонний станок Weinig UNIMAT 23 EL
Обработка прямолинейных заготовок может быть выполнена на разных станках с различной точностью и с различной производительностью. При выборе варианта технологического процесса обработки следует ориентироваться на самые производительные станки, учитывая требуемую точность обработки.
Наиболее точная обработка будет получена по варианту 1, так как средняя точность обработки на фуговальном станке с последующей обработкой на рейсмусовом станке выше, чем у четырехсторонних фрезерных станков. Менее точная обработка будет по варианту 2, а еще менее – по варианту 4.
Рис.10.18 Схема торцевания заготовок на станке с кареткой:
1 – каретка с линейкой и упором; 2 – пила;
3 – направляющая линейка
Рис. 10.19 Схема двухстороннего торцовочного станка:
1 – пилы; 2 – конвейерная цепь; 3 – упоры; 4 – заготовки
Рис. 10.19 Торцовочный станок
При больших объемах производства брусковых деталей целесообразно использовать высокопроизводительные автоматические линии, например автоматический торцовочный станок DIMTER OPTICUT S50 (Германия) (рис. 10.20).
Для обработки брусковых деталей применяются высокопроизводительные линии МОБ-1, ОК-508, ОК-503 (Россия) и угловые центры UNICONTROL 6 (рис. 10.21) и UNICONTROL 10 (Германия). Угловые центры предназначены для выполнения всего комплекса операций по изготовлению оконных рам с различными размерами и профилями. Станки этого класса отличаются не только высокой производительностью, но и хорошим качеством изделий, а также быстрой переналадкой агрегата.
Рис. 10.20 Универсальная торцовочная установка DIMTER OptiCut S50
Рис. 10.21 Угловой центр Unicontrol 6 WEINIG
Дата добавления: 2014-10-14 ; просмотров: 964 ; Нарушение авторских прав
Стратегии обработки. Черновая, получистовая и чистовая обработки, страница 2
Механическая обработка металла представляет собой физическое воздействие на металлическую заготовку с целью получения изделия нужной геометрии с желаемым качеством поверхности. Воздействовать на заготовку можно посредством режущего инструмента (сверла, фрезы, резца и т.п.) или с помощью давления либо удара. Именно по этому принципу механическая обработка изделий делится на две основные группы — операции, выполняющиеся без снятия и со снятием металла. В первом случае это прессование, прокат, ковка (для цветных металлов) и штамповка (чаще для черных металлов). Во втором случае это механическая обработка деталей на станках — резание. К данной группе относятся следующие операции:
Основные понятия для токаря
Данная методика заключается в снятии верхнего слоя со стальной заготовки посредством режущего инструмента. Цель металлообработки – достижение определенных параметров и нужной степени шероховатости.
Технология заключается во взаимодействии двух подач – продольной и поперечной, чтобы добиться одновременного вращения изделия и перемещения резца. Помимо основной задачи на оборудовании можно выполнять ряд второстепенных процессов:
На аналогичных станках выполняют не только металлообработку, обработке подвергаются и другие материалы, в том числе дерево и пластмасса. Но наиболее востребованным является оборудование по стали.
Заготовки могут иметь цилиндрическую, конусообразную форму, в зависимости от того, как направлены полозья. Из них вытачивают такие детали, как:
Технология активно используется как на производстве, так и в домашних условиях. Большинство заводов переходит с ручного управления на автоматизированное посредством ЧПУ – Числовое Программное Управление.
Основные стандарты прописаны в нормативном документе – ГОСТ 25762-83. Здесь указаны нормы работы, а также правила безопасности. Расчет мощности резания при точении и используемая технология выбирается в зависимости от прочности материала, длины заготовки и задач. При обработке чрезмерно длинного вала велика вероятность вибраций, поэтому процедура проводится на низких оборотах.
Действия самого станка заключаются в обеспечении вращательного движения (металлическая заготовка крепится с двух сторон) и подачи инструмента, которым может быть резец:
Рабочая зона отличается повышенным количеством стружки. По этой причине токарные станки с ЧПУ часто оснащают устройством стружкоотведения, а также системой подачи смазки.
После окончания процесса оператор обязательно проводит контрольные измерения. Они заключаются в определении точных размеров посредством предельного калибра (в основном используется на серийном производстве) или штангенциркуля, или другого измерительного инструмента.
Для токаря важно правильно подобрать скорость и инструмент для металлообработки. Он должен быть из высокопрочной стали и всегда наточен. При контакте с металлом происходит значительный нагрев в месте соприкосновения, силы сцепления нарушаются, верхний слой снимается, превращаясь в стружку. Чтобы не убрать лишнее, необходимо оставлять припуски на токарную обработку при черновом и чистовом точении.
Теперь подробнее поговорим о том, какие стадии может проходить одна и та же заготовка.
Черновое твердое точение
Для начала скажем о том, что есть сверхчерновой вариант металлообработки, он же – обдирочный. В процессе обдирки происходит очень высокое напряжение на режущей кромке, в среднем около Q = 800/3000 см3 * мин-1. Первичные деформации происходят с активным выделением тепла и с высокой нагрузкой на сам резец – сила резания доходит до 10 000/60 000 N. Это может вызвать деформирование инструмента с последующим выходом из строя – полная потеря твердости инструментальной стали. Износ происходит быстрее и сильнее, когда деталь была произведена путем отливки или штамповки, поскольку эти методы металлообработки приводят к появлению твердых включений в материале, а удары об них существенно снижают длительность эксплуатации изделия.
При черновом режиме резания при точении фасок данные показатели немного ниже, но также остаются существенными, как и при обдирке. Мы рекомендуем выбирать резец в зависимости от стиля обработки. При непрерывном контакте минимизируется количество ударов, но возрастает выделение тепла и сила резания: по этой причине следует выбирать инструмент с большим пределом термостойкости. Обычно, в таких сплавах минимален процент оксида углерода, это низкоуглеродистые соединения. Они менее прочные, однако хуже подвергаются пластическим деформациям при нагреве.
Прерывистая техника подразумевает меньший контакт с заготовкой, а значит, более длительную эксплуатацию, поскольку шанс деформирования резца снижается. Но из-за циклических механических ударов хрупкий материал может быстро выйти из строя. Для таких черновых работ рекомендуется использовать инструмент из углеродистого сплава.
На данных двух этапах – обдирка и черновое точение, детали не имеют значения. Задача токаря – обтесать монолитный блок стали до необходимых размеров. При этом требуется оставить припуски, необходимые для последующей чистовой металлообработки – около 1 мм на все параметры. Шероховатость при этом не имеет значительного влияния, поскольку она не является конечной.
Получистовая обработка
Она необходима не повсеместно, в ряде случаев этот этап совершенно пропускается. Но когда требуется высокая точность изделия, то работы производятся с дополнительным промежуточным этапом. Берется более узкий резец, который производит снятие мелкой стружки. Отметим, что чем меньше съем слоя, тем дольше срок эксплуатации инструмента. Это обуславливается меньшим контактом поверхностей и, соответственно, уменьшенной выработкой тепла. В результате, деформации режущей кромки незначительны.
Отличительные черты высокоскоростного получистового точения:
Отметим, что данная фаза металлообработки необходима для производства миниатюрных изделий, поскольку они имеют высокий класс точности. После изготовления деталь проходит стадию шлифовки и обретает эксплуатационную шероховатость – она значительно меньше исходной.
Операции для чистовой обработки поверхности
В большинстве случаев это итоговые процедуры. После идет только финишная шлифовка, также называемая тонкой.
Интересно, что для данного типа можно использовать те же резцы, что и для обдирки. Это характерно для машиностроения, особенно при обтачивании крупногабаритных валов. Меняется только скорость подачи. Приведем данные в таблице:
Класс чистоты | 4 | 5 | 6 |
Скорость подачи, мм/об | 0,5-0,9 | 0,25-0,6 | 0,15-0,4 |
Но с учетом большой поверхности нельзя быть уверенным, что один инструмент гарантирует 2-3 классы точности, поскольку естественный износ режущей кромки в ходе использования увеличивается, превышая установленный допуск. Решить эту проблему можно одним способом – сократить путь, который проходит резец по площади, а добиться этого возможно только увеличением подачи.
Второй вариант – работать широкими резцами на высокой скорости. Необходимо делать два прохода: первый на глубине 0,15 мм, второй – на 0,2 мм. Так можно добиться высоких результатов.
Геометрия режущего инструмента выбирается, исходя из материала. Чем выше предел прочности, тем уже угол кромки.
Чтобы уменьшить трение и тем самым предотвратить термические деформации, рекомендовано использовать смазку. Большинство токарей раньше применяли состав, в который входят:
Сейчас применяют готовую смазку или концентрат СОЖ. Шероховатость при чистовом точении после второго прохода – 3,2…1,6 Ra. Добиться такой точности (6, 7 класс) можно, используя пластинки из твердой стали марки Т 15 К6 и скорость 100 – 250 м/мин. При таких оборотах на резце не образуются наросты, а значит, нет дефектов.
Если материал заготовки обладает высокой твердостью, то используют сплав Т 15 К4 – он еще более устойчив к температурным изменениям, поэтому можно развивать вращение до 400 – 500 м/мин.
При работе с чугуном применяют керамику. Такие пластины редко используются из-за своей дороговизны и быстрого износа, но для чугунных изделий с максимальным классом точности они не заменимы.
Стоит отметить что в данный момент широкое распространение получили токарные резцы с механическим креплением пластин. На рынке огромный выбор токарных резцов со сменными пластинами и твердосплавных сменных пластин различных форм и сплавов.
Что называется тонким точением: шероховатость и особенности
В ряде случаев процедура полностью заменяет шлифование, поскольку высококлассный токарь может добиться 1 – 2 класса точности и 8 – 10 – чистоты. Процесс срезания тончайшей стружки проходит при максимальной скорости вращения и минимальной подачей. Обязательным условием является хорошая наладка оборудования:
Инструменты изготавливаются из сталей марок ВК2, БКЗМ и Т30К4. Первые две больше подходят для высокопрочных материалов, чугуна.
Добиться высокой точности можно на станках, оснащенных ЧПУ. осуществляет продажу и наладку оборудования с числовым программным управлением. При использовании станков с ЧПУ необходимо написать программу изготовления детали, используя G и М коды М команды, и загрузить их в систему ЧПУ.
Назначение величины подачи
Расчет режимов резания при токарной обработке невозможно представить без величины перемещения режущего инструмента за один оборот детали – подачи (S). Её выбор зависит от требуемой шероховатости и степени точности обрабатываемой детали, если это чистовая обработка. При черновой допустимо использовать максимальную подачу, исходя из прочности материала и жесткости её установки. Выбрать необходимую подачу можно при помощи таблицы ниже.
После того как S была выбрана, её необходимо уточнить в паспорте станка.
Режимы при токарной обработке
Токарь выбирает технологию в зависимости от множества факторов:
В соответствии с этим регулируется скорость вращения, подача и некоторые другие факторы. Рассмотрим ниже.
Влияние шероховатости на работу деталей
Как упоминалось ранее, в процессе придания металлическому листу нужной конфигурации на местах воздействия остаются шероховатости – небольшие впадины и гребешки, влияющие на определение класса обработки металла. Они могут возникнуть вследствие неровности режущего инструмента или вибраций, возникающих в ходе работы, остаться как отпечаток неровности на самом штампе или форме и т. д.
Наличие шероховатости детали, установленной в машину или другой агрегат, может привести к:
Основные параметры
В основном они меняются в зависимости от экономической целесообразности процесса, а именно:
В связи с этим высокоскоростное точение конуса или цилиндра на токарном станке на пределе возможностей – не всегда выгодное решение. Опишем основные параметры.
Глубина
Это размер срезанной стружки. Его заранее определяют, чтобы оставить припуск. В технических расчетах определяется по формуле: t = (D-d)/2, где:
D – диаметр заготовки; d – размер итоговой детали.
Осуществляется процедура обычно в 2 подхода, отсюда деление глубины резца на два.
Подача
Это поперечное перемещение резца по направляющим. Не всегда высокая скорость – это хорошо. Обычно производительность напрямую зависит от нее, но, к примеру, при повышении класса точности она должна быть невысокой, только так можно добиться правильной шероховатости. Существует продольное точение – это самый стандартный вид, когда вращается заготовка, а инструмент передвигается по линии. Второй тип, когда сам резец имеет два движения – горизонтальное и вращательное, применяется при сверлении и растачивании отверстий.
Скорость
Фактически это то, сколько метров поверхности будет обработано при перемещении режущей кромки на 1 мм. Параметр прямо зависит от количества оборотов заготовки и от подачи. Определяется по формуле:
Скорость резания при точении – таблицы для черновой и чистовой металлообработки:
С чего начать расчет
Для того чтобы рассчитать режим резания, в первую очередь необходимо выбрать материал резца. Он будет зависеть от материала обрабатываемой детали, вида и этапа обработки. Кроме того, более практичными считаются резцы, в которых режущая часть съёмная. Иными словами, необходимо подобрать лишь материал режущей кромки и закрепить её в режущий инструмент. Самым выгодным режимом считается тот, при котором затраты на изготавливаемую деталь будут наименьшими. Соответственно, если выбрать не тот режущий инструмент, он, скорее всего, сломается, а это принесет убытки. Так как же определить необходимый инструмент и режимы резания при токарной обработке? Таблица, представленная ниже, поможет выбрать оптимальный резец.
Технология растачивания отверстий
Аналогичная процедура возможна посредством сверления, рассверливания или зенкерования, но такой метод обычно не позволяет достичь максимально верных размеров, а также требует специального оборудования.
Работы позволяют добиться 8 – 10 квалитета точности и 0.8…3.2 мкм шероховатости.
Скорость резания
Очень важными значениями, влияющими на режимы резания при токарной обработке, являются скорость резания (v) и частота вращения шпинделя (n). Для того чтобы вычислить первую величину используют формулу:
V = (π х D х n) / 1000,
где π – число Пи равное 3,12;
D – максимальный диаметр детали;
n – частота вращения шпинделя.
Если последняя величина остается неизменной, то скорость вращения будет тем больше, чем больше диаметр заготовки. Данная формула подходит, если известна скорость вращения шпинделя, в противном случае необходимо использовать формулу:
v = (Cv х Kv)/ (Tm х t х S),
где t и S – уже рассчитанная глубина резания и подача, а Cv, Kv, T – коэффициенты, зависящие от механических свойств и структуры материала. Их значения можно взять в таблицах режимов резания.
Черновая обработка металла
Прежде чем из лома или шихты появиться готовая деталь, она должна пройти массу операций по обработке на самых различных станках. Эта обработка может быть механической, термической, термомеханической, термохимической или другой, в зависимости от вида энергии, который при ней используется.
Если же делить весь процесс на основные этапы, то существует черновая обработка металла, получистовая и чистовая.
Второй этап может совмещаться с третьим, или вовсе не использоваться, но это возможно только в том случае, если изготавливаются изделия несложной формы.
Суть черновой обработки металла заключается в придании заготовке размеров и форм, приближенных к тем, которые заданы в чертежах. При этом остаются припуски на получистовую и чистовую обработку, которая проводится на специальных станках и установках. Рассмотрим, какие процессы проходит металл в ходе подготовки к превращению в полноценную деталь.
Особенности предварительной черновой обработки металла
Поскольку черновая обработка металла предполагает только подготовительные работы перед основными процессами, она имеет ряд своих особенностей. Рассмотрим более подробно, почему так важно различать типы обработки и чем они друг от друга отличаются.
Неточность размеров
Как правило, при предварительной подготовке, металл нагревается, так с ним проще работать. Однако это значительно влияет на точность снятия припусков, поскольку под воздействием высокой температуры материал расширяется, а при остывании – снова сужается. Все эти несоответствия легко исправляются во время получистовой и чистовой доработки, когда заготовка не поддается нагреванию.
Коробление заготовки
Снятие большого припуска литейных корок ведет к удалению поверхностных слоев заготовок с самым большим напряжением, что является причиной перераспределения внутреннего напряжения. Этот процесс может спровоцировать коробление заготовки, но все погрешности во время конечной доработки устраняются.
Неправильная шероховатость поверхности
Поскольку черновая обработка металла предполагает создание минимального технического припуска, после нее поверхность заготовки не имеет той степени шероховатости, которая указана в чертежах.
Во время чистовой обработки все эти неточности исправляются, используются специальные инструменты и приспособления, которые придают деталям глянцевый блеск или матовую бархатистость, в зависимости от поставленных требований.
Операции в черновой обработки металла
Во время черновой обработки проводятся такие операции:
Автоматизация оборудования для черновой обработки металла
Несмотря на то, что черновая обработка металла – это только подготовительный этап к основной доработке, она является сложным и трудоемким процессом. Именно по этой причине большинство оборудования, которое используется на серийных производствах, автоматизировано.
Специальные станки с ЧПУ выполняют даже самые сложные задачи с минимальным участием человека. Оператор следит за выполнением всех процессов и задает машинам программы, по которым они должны работать.
Кроме того, включение агрегатов в автоматическую линию сводит к минимуму или вообще исключает простаивание заготовок, после предварительной обработки они сразу же направляются по конвейеру на получистовую и чистовую доработку.
Также использование машин с программным обеспечением помогает сократить энергоемкость процессов, поскольку все современные установки снабжены энергосберегающими механизмами.
Ученые постоянно разрабатывают новые технологии, позволяющие выполнять даже самые сложные задачи с минимальными потерями сырья и в короткий срок.
Где демонстрируют последние технические и технологические новинки в сфере металлообработки
В ЦВК «Экспоцентр» будет проходить специализированная профильная выставка «Металлообработка».
На мероприятии можно будет узнать, при помощи какого инновационного оборудования проводится черновая обработка металла и друге процессы.
Представители лучших компаний из более тридцати стран мира будут демонстрировать инновационные технологии и оборудование для металлообработки, вы сможете узнать, какие научные разработки уже нашли свое практическое применение, а какие находятся в стадии тестирования.
Заказ электронного билета можно сделать онлайн в считанные минуты.