Что такое экспериментальная физика
Экспериментальная физика
Эксперимента́льная фи́зика — способ познания природы, заключающийся в изучении природных явлений в специально приготовленных условиях. В отличие от теоретической физики, которая исследует математические модели природы, экспериментальная физика призвана исследовать саму природу.
Именно несогласие с результатом эксперимента является критерием ошибочности физической теории, или более точно, неприменимости теории к нашему миру. Обратное утверждение не верно: согласие с экспериментом не может быть доказательством правильности (применимости) теории. То есть главным критерием жизнеспособности физической теории является проверка экспериментом.
Эта очевидная сейчас роль эксперимента была осознана лишь Галилеем и более поздними исследователями, которые делали выводы о свойствах мира на основании наблюдений за поведением предметов в специальных условиях, т. е. ставили эксперименты. Заметим, что это совершенно противоположно, например, подходу древних греков: источником истинного знания об устройстве мира им казалось лишь размышление, а «чувственный опыт» считался подверженным многочисленным обманам и неопределённостям, а потому не мог претендовать на истинное знание.
В идеале, экспериментальная физика должна давать только описание результатов эксперимента, без какой-либо их интерпретации. Однако на практике это недостижимо. Интерпретация результатов более-менее сложного эксперимента неизбежно опирается на то, что у нас есть понимание, как ведут себя все элементы экспериментальной установки. Такое понимание, в свою очередь, не может не опираться на какие-либо теории. Так, эксперименты в ускорительной физике элементарных частиц — одни из самых сложных во всей экспериментальной физике — могут трактоваться как настоящее изучение свойств элементарных частиц лишь после того, как детально поняты (с помощью соответствующих теорий) механические и упругие свойства всех элементов детектора, их отклик на электрические и магнитные поля, свойства остаточных газов в вакуумной камере, распределение электрического поля и дрейф ионов в пропорциональных камерах, процессы ионизации вещества и т. д.1
Экспериментальная физика
Именно несогласие с результатом эксперимента является критерием ошибочности физической теории, или более точно, неприменимости теории к нашему миру. Обратное утверждение не верно: согласие с экспериментом не может быть доказательством правильности (применимости) теории. То есть главным критерием жизнеспособности физической теории является проверка экспериментом.
Эта очевидная сейчас роль эксперимента была осознана лишь Галилеем и более поздними исследователями, которые делали выводы о свойствах мира на основании наблюдений за поведением предметов в специальных условиях, т. е. ставили эксперименты. Заметим, что это совершенно противоположно, например, подходу древних греков: источником истинного знания об устройстве мира им казалось лишь размышление, а «чувственный опыт» считался подверженным многочисленным обманам и неопределённостям, а потому не мог претендовать на истинное знание.
В идеале, экспериментальная физика должна давать только описание результатов эксперимента, без какой-либо их интерпретации. Однако на практике это недостижимо. Интерпретация результатов более-менее сложного эксперимента неизбежно опирается на то, что у нас есть понимание, как ведут себя все элементы экспериментальной установки. Такое понимание, в свою очередь, не может не опираться на какие-либо теории. Так, эксперименты в ускорительной физике элементарных частиц — одни из самых сложных во всей экспериментальной физике — могут трактоваться как настоящее изучение свойств элементарных частиц лишь после того, как детально поняты (с помощью соответствующих теорий) механические и упругие свойства всех элементов детектора, их отклик на электрические и магнитные поля, свойства остаточных газов в вакуумной камере, распределение электрического поля и дрейф ионов в пропорциональных камерах, процессы ионизации вещества и т. д.
Экспериментальная физика
LHC — ускоритель, или Большой Адрон Коллайдер, который в настоящее время находится в работе. LHC начал операции в 2008, но был закрыт для обслуживания до лета 2009.
Эксперимента́льная фи́зика — способ познания окружающего нас мира, заключающийся в изучении природных явлений на базе поставленных экспериментов. В отличие от теоретической физики, которая исследует математические модели природы, экспериментальная физика занимается исследованием самой природы.
Эта очевидная сейчас роль эксперимента была осознана лишь Галилеем и более поздними исследователями, которые делали выводы о свойствах мира на основании наблюдений за поведением предметов в специальных условиях, т. е. ставили эксперименты. Заметим, что это совершенно противоположно, например, подходу древних греков: источником истинного знания об устройстве мира им казалось лишь размышление, а «чувственный опыт» считался подверженным многочисленным обманам и неопределённостям, а потому не мог претендовать на истинное знание.
В идеале, экспериментальная физика должна давать только описание результатов эксперимента, без какой-либо их интерпретации. Однако на практике это недостижимо. Интерпретация результатов более-менее сложного эксперимента неизбежно опирается на то, что у нас есть понимание, как ведут себя все элементы экспериментальной установки. Такое понимание, в свою очередь, не может не опираться на какие-либо теории. Так, эксперименты в ускорительной физике элементарных частиц — одни из самых сложных во всей экспериментальной физике — могут трактоваться как настоящее изучение свойств элементарных частиц лишь после того, как детально поняты (с помощью соответствующих теорий!) механические и упругие свойства всех элементов детектора, их отклик на электрические и магнитные поля, свойства остаточных газов в вакуумной камере, распределение электрического поля и дрейф ионов в пропорциональных камерах, процессы ионизации вещества и т. д.
Содержание
Текущие эксперименты
Некоторые примеры важных экспериментальных проектов физики:
Методы экспериментов
Экспериментальная физика использует два главных метода экспериментального исследования:
Экспериментальная физика
LHC — ускоритель, или Большой Адрон Коллайдер, который в настоящее время находится в работе. LHC начал операции в 2008, но был закрыт для обслуживания до лета 2009.
Эксперимента́льная фи́зика — способ познания окружающего нас мира, заключающийся в изучении природных явлений на базе поставленных экспериментов. В отличие от теоретической физики, которая исследует математические модели природы, экспериментальная физика занимается исследованием самой природы.
Эта очевидная сейчас роль эксперимента была осознана лишь Галилеем и более поздними исследователями, которые делали выводы о свойствах мира на основании наблюдений за поведением предметов в специальных условиях, т. е. ставили эксперименты. Заметим, что это совершенно противоположно, например, подходу древних греков: источником истинного знания об устройстве мира им казалось лишь размышление, а «чувственный опыт» считался подверженным многочисленным обманам и неопределённостям, а потому не мог претендовать на истинное знание.
В идеале, экспериментальная физика должна давать только описание результатов эксперимента, без какой-либо их интерпретации. Однако на практике это недостижимо. Интерпретация результатов более-менее сложного эксперимента неизбежно опирается на то, что у нас есть понимание, как ведут себя все элементы экспериментальной установки. Такое понимание, в свою очередь, не может не опираться на какие-либо теории. Так, эксперименты в ускорительной физике элементарных частиц — одни из самых сложных во всей экспериментальной физике — могут трактоваться как настоящее изучение свойств элементарных частиц лишь после того, как детально поняты (с помощью соответствующих теорий!) механические и упругие свойства всех элементов детектора, их отклик на электрические и магнитные поля, свойства остаточных газов в вакуумной камере, распределение электрического поля и дрейф ионов в пропорциональных камерах, процессы ионизации вещества и т. д.
Содержание
Текущие эксперименты
Некоторые примеры важных экспериментальных проектов физики:
Методы экспериментов
Экспериментальная физика использует два главных метода экспериментального исследования:
Экспериментальная физика это категория дисциплин и субдисциплин в области физика которые озабочены наблюдение физических явления и эксперименты. Методы варьируются от дисциплины к дисциплине, от простых экспериментов и наблюдений, таких как Кавендиш эксперимент, к более сложным, таким как Большой адронный коллайдер.
Содержание
Обзор
Экспериментальная физика объединяет все дисциплины физики, которые связаны со сбором данных, методами сбора данных и детальной концептуализацией (помимо простых мысленные эксперименты) и проведение лабораторных экспериментов. Его часто противопоставляют теоретическая физика, которая больше связана с предсказанием и объяснением физического поведения природы, чем с получением знаний о ней.
Хотя экспериментальная и теоретическая физика занимается разными аспектами природы, они обе преследуют одну и ту же цель понимания ее и имеют симбиотические отношения. Первый предоставляет данные о Вселенной, которые затем могут быть проанализированы, чтобы быть понятым, в то время как последний предоставляет объяснения данных и, таким образом, предлагает понимание того, как лучше получать данные и как проводить эксперименты. Теоретическая физика также может дать представление о том, какие данные необходимы, чтобы лучше понять Вселенную, и о том, какие эксперименты следует разработать, чтобы их получить.
История
Как отдельная область, экспериментальная физика была создана в ранняя современная европа, во время так называемого Научная революцияфизиками, такими как Галилео Галилей, Кристиан Гюйгенс, Иоганн Кеплер, Блез Паскаль и сэр Исаак Ньютон. В начале 17 века Галилей широко использовал эксперименты для проверки физических теорий, что является ключевой идеей современного научного метода. Галилей сформулировал и успешно протестировал несколько результатов в динамике, в частности закон инерция, который впоследствии стал первым законом в Законы движения Ньютона. У Галилея Две новые науки, диалог между персонажами Симпличио и Сальвиати обсуждает движение корабля (как движущуюся рамку) и то, как груз этого корабля безразличен к его движению. Гюйгенс использовал движение лодки по голландскому каналу, чтобы проиллюстрировать раннюю форму сохранения импульс.
Считается, что экспериментальная физика достигла апогея с публикацией Philosophiae Naturalis Principia Mathematica в 1687 году сэром Исааком Ньютоном (1643–1727). В 1687 году Ньютон опубликовал Principia, детализируя два всеобъемлющих и успешных физических закона: Законы движения Ньютона, из которых возникают классическая механика; и Закон всемирного тяготения Ньютона, который описывает фундаментальная сила из сила тяжести. Оба закона хорошо согласуются с экспериментом. В Principia также включил несколько теорий в динамика жидкостей.
С конца 17 века и далее термодинамика был разработан физиком и химиком Бойл, Молодой, и многие другие. В 1733 г. Бернулли использовали статистические аргументы с классической механикой для получения термодинамических результатов, инициировав область статистическая механика. В 1798 г. Томпсон продемонстрировал преобразование механической работы в тепло, а в 1847 г. Джоуль сформулировал закон сохранения энергия, в виде тепла, а также механической энергии. Людвиг Больцманн, в девятнадцатом веке, отвечает за современную форму статистическая механика.
Помимо классической механики и термодинамики, еще одной большой областью экспериментальных исследований в физике была природа электричество. Наблюдения 17-18 веков таких ученых, как Роберт Бойл, Стивен Грей, и Бенджамин Франклин создал основу для дальнейшей работы. Эти наблюдения также установили наше базовое понимание электрического заряда и текущий. К 1808 году Джон Далтон открыли, что атомы разных элементов имеют разный вес, и предложили современные теория атома.
Это было Ганс Кристиан Эрстед который первым предложил связь между электричеством и магнетизмом после наблюдения отклонения стрелки компаса под действием электрического тока. К началу 1830-х гг. Майкл Фарадей продемонстрировали, что магнитные поля и электричество могут генерировать друг друга. В 1864 г. Джеймс Клерк Максвелл представлен Королевское общество набор уравнений, описывающих эту взаимосвязь между электричеством и магнетизмом. Уравнения Максвелла также правильно предсказал, что свет является электромагнитная волна. Начиная с астрономии, принципы естественная философия кристаллизовался в фундаментальные законы физики которые были сформулированы и усовершенствованы в последующие века. К 19-му веку науки разделились на несколько областей со специализированными исследователями, а область физики, хотя логически преобладала, больше не могла претендовать на единоличное владение всей областью научных исследований.
Текущие эксперименты
Вот некоторые примеры известных проектов экспериментальной физики:
Метод
Экспериментальная физика использует два основных метода экспериментального исследования: контролируемые эксперименты, и естественные эксперименты. Контролируемые эксперименты часто используются в лаборатории поскольку лаборатории могут предложить контролируемую среду. Натуральные эксперименты используются, например, в астрофизика при наблюдении небесные объекты где управление действующими переменными невозможно.
Знаменитые эксперименты
Известные эксперименты включают:
Экспериментальные техники
Некоторые известные экспериментальные методы включают:
Выдающиеся физики-экспериментаторы
Среди известных физиков-экспериментаторов:
Сроки
См. График ниже, где перечислены физические эксперименты.