Что такое экспрессия в медицине генов

Экспрессия генов

Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль за временем, местом и количественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме.

Содержание

Транскрипция и трансляция

У прокариот и эукариот гены представляют собой последовательности нуклеотидов ДНК. На матрице ДНК происходит транскрипция — синтез комплементарной РНК. Далее на матрице мРНК происходит трансляция — синтезируются белки. Существуют гены, кодирующие нематричную РНК (например, рРНК, тРНК, малые РНК), которые экспрессируются (транскрибируются), но не транслируются в белки.

Регуляция

Компактизация ДНК

Привлечение факторов транскрипции

Регуляция после транскрипции

МикроРНК могут иметь большую или меньшую специфичность благодаря большей или меньшей доле комплементарных своей мишени азотистых оснований. Низкая специфичность позволяет одной микроРНК подавлять экспрессию сотен разных генов. [1]

Моноаллельная экспрессия генов

Моноаллельная экспрессия у эукариот характерна:

См. также

Примечания

Литература

Полезное

Смотреть что такое «Экспрессия генов» в других словарях:

экспрессия генов — Преобразование информации, заложенной в ДНК в белок [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN gene expression … Справочник технического переводчика

Экспрессия генов — (от лат. expressio выражение) сложный молекулярный процесс в результате которого информация содержащаяся в ДНК (или РНК) молекуле преобразуется в вещество (белок, фермент) … Физическая Антропология. Иллюстрированный толковый словарь.

Клеточно-специфическая экспрессия генов — * клетачна спецыфічная экспрэсія генаў * cell specific gene expression экспрессия только определенной части генома в определенных клетках и в определенное время, которая происходит под контролем транскрипционных факторов, включающих и выключающих … Генетика. Энциклопедический словарь

генов поток — * генаў паток * gene flow обмен генами между разными популяциями одного и того же вида за счет мигрантов, что приводит к временному изменению частоты генов многих локусов в общем пуле генов (см. ) популяции реципиента (см. ). Генов распределение… … Генетика. Энциклопедический словарь

Экспрессия гена — Экспрессия генов это процесс, в котором наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время… … Википедия

Экспрессия — Экспрессия (лат. expressio выражение): В Викисловаре есть статья «экспрессия … Википедия

Экспрессия белков — * экспрэсія бялкоў * protein expression синтез белков в клетке под контролем соответствующих генов. При вставке рекомбинантного гена в клетку хозяина экспрессируют нужный исследователю белок. Многие методики и технологии базируются на Э. б., при… … Генетика. Энциклопедический словарь

ЭКСПРЕССИЯ ГЕНА — программируемый геномом процесс биосинтеза белков и(или) РНК. При синтезе белков Э. г. включает транскрипцию синтез РНК с участием фермента РНК полимеразы; трансляцию синтез белка на матричной рибонуклеиновой кислоте, осуществляемый в рибосомах,… … Химическая энциклопедия

геномная библиотека банк генов — геномная библиотека, банк генов * геномная бібліятэка, банк генаў * genomic library or gene bank набор клонированных фрагментов ДНК, представляющих индивидуальный (групповой, видовой) геном. У млекопитающих (в т. ч. человека) геномы крупные,… … Генетика. Энциклопедический словарь

Импринтинг генов — Геномный импринтинг это эпигенетический процесс, при котором экспрессия определенных генов осуществляется в зависимости от того, от какого родителя поступил аллель гена. Это ненаследуемый процесс, который не подчиняется наследованию по Менделю.… … Википедия

Источник

Что такое экспрессия в медицине генов

Для генов, кодирующих белки, движение информации от гена до полипептида включает несколько шагов. Инициация транскрипции гена происходит под влиянием промоторов и других управляющих элементов, а также специфических белков, известных как факторы транскрипции, взаимодействующих с определенными последовательностями в пределах управляющих областей гена и определяющих пространственную и временную схему экспрессии гена. Транскрипция гена начинается со «стартовой» точки в хромосомной ДНК в начале 5′-транскрибируемой, но не транслируемой области.

Процесс транскрипции идет непрерывно по ходу кодирующей последовательности вдоль хромосомы, проходя от нескольких сотен пар оснований до более миллиона пар, захватывая как интроны, так и экзоны, и завершаясь на конце кодирующей последовательности. После модификации обоих 5′ и З’-концов первичной копии РНК части, соответствующие нитронам, удаляются, а сегменты, соответствующие экзонам, сращиваются вместе.

После сплайсинга (сращивания) РНК результирующая мРНК (содержащая центральный сегмент, соответствующий кодирующей части гена), перемещается из ядра в цитоплазму клетки, где мРНК транслируется в аминокислотную последовательность закодированного полипептида. Каждая составляющая этого сложного пути подвержена ошибкам и мутациям, которые создают помехи и вызывают множество наследственных заболеваний.

Транскрипция

Транскрипция белок-кодирующего гена РНК-полимеразой-II (одна из нескольких классов РНК-полимераз) начинается в стартовом сайте транскрипции, в точке 5′-нетранслируемой области, соответствующей 5′-концу конечной РНК. Синтез первичной копии РНК идет по направлению от 5′ к З’-концу, поскольку нить считываемого гена, который служит шаблоном для синтеза РНК, действительно считывается в направлении от 3′ к 5′-концу в соответствии с направлением фосфатных связей дезоксирибозы.

Поскольку синтезированная РНК соответствует расположению и последовательности нуклеотидов (с заменой урацила на тимин) 5′-3′-нити ДНК, такую нить ДНК часто называют кодирующей или комплементарной ДНК (кДНК). 3′-5′-нить ДНК носит название некодирующей или антисмысловой. Транскрипция осуществляется как для интронных, так и для экзонных частей гена, до позиции в хромосоме, которая записывается на 3′-конец зрелой мРНК. Неизвестно, заканчивается ли транскрипция в определенной точке терминации на 3′-конце.

Затем в области 5′-конца первичной копии РНК происходит кэпирование, а в специфической точке 3′-конца — расщепление. Расщепление заканчивается присоединением к 3′-концевым звеньям множества остатков аденозина — поли-(А), что увеличивает стабильность полученной РНК. Позиция точки полиаденилирования частично определяется последовательностью AAUAAA (или вариантами этой последовательности), обычно обнаруживаемой в 3′-нетранслируемой части копии РНК. Описанные посттрансляционные модификации, как и процесс сплайсинга РНК, происходят в ядре.

Полностью обработанная РНК, теперь называющаяся мРНК, перемещается в цитоплазму, где происходит трансляция.

Что такое экспрессия в медицине генов. Смотреть фото Что такое экспрессия в медицине генов. Смотреть картинку Что такое экспрессия в медицине генов. Картинка про Что такое экспрессия в медицине генов. Фото Что такое экспрессия в медицине генов

Трансляция и генетический код

В цитоплазме мРНК транслируется в белок под действием молекул тРНК, специфичной для каждой конкретной аминокислоты. Эти замечательные молекулы, каждая всего от 70 до 100 нуклеотидов длиной, добавляют к растущей полипептидной цепи определенную аминокислоту в соответствии с шаблоном мРНК. Белковый синтез происходит в рибосомах, макромолекулярных комплексах, состоящих из рРНК (кодируемой генами 18S и 28S) и нескольких десятков рибосомальных белков.

Ключ трансляции — код, который связывает специфическую аминокислоту с комбинацией из трех смежных оснований на мРНК. Каждое сочетание трех оснований составляет кодон, специфичный для конкретной аминокислоты. В теории существует почти бесконечное множество вариантов размещения оснований вдоль полинуклеотидной цепи. В каждом положении может быть один из четырех нуклеотидов (А, Т, С или G); таким образом, для трех оснований есть 43 или 64 возможные комбинации триплетов. Эти 64 кодона и составляют генетический код.

Поскольку на 20 аминокислот приходится 64 возможных кодона, некоторые аминокислоты определяются более чем одним кодоном; поэтому генетический код называют вырожденным. Например, основание в третьей позиции триплета часто может быть или пуриновым (А или G), или пиримидиновым (Т или С), а в некоторых случаях любое из четырех оснований не изменяет смысл сообщения. Лейцин и аргинин определяются сразу шестью кодонами. Только метионин и триптофан кодируются единственным, уникальным триплетом. Три кодона называются стоп-кодонами (или нонсенс-кодонами), поскольку они определяют завершение трансляции мРНК.

Трансляция зрелой мРНК всегда начинается с кодона, определяющего метионин. Следовательно, метионин — всегда первая аминокислота каждой полипептидной цепи, хотя обычно он удаляется до завершения синтеза белка. Кодон метионина (или кодон-инициатор, AUG) устанавливает рамку считывания мРНК; каждый последующий кодон считывается поочередно, указывая аминокислотную последовательность белка.

Молекулярные связи между кодонами и аминокислотами обеспечивают специфические молекулы тРНК. Конкретный участок (сайт) на каждой тРНК формирует антикодон из трех оснований, комплементарный (дополнительный) к специфическому кодону на мРНК. Соединение между кодоном и антикодоном приводит соответствующую аминокислоту на следующую позицию в рибосоме для присоединения с образованием пептидной связи к карбоксильному концу растущей полипептидной цепи. Рибосома затем скользит вдоль мРНК точно на три основания, захватывая следующий кодон для опознавания другой тРНК со следующей аминокислотой.
Таким образом, белки синтезируются, начиная от аминогруппы к карбоксильной группе, что соответствует трансляции мРНК в направлении от 5′-конца к 3′-концу.

Как упоминалось ранее, трансляция заканчивается, когда в той же рамке считывания, что и кодон-инициатор, встречается стоп-кодон (UGA, UAA или UAG). Стоп-кодоны в любой из других неиспользованных рамок считывания не читаются и, следовательно, не оказывают эффекта на трансляцию. Завершенный полипептид отделяется от рибосомы, и она становится доступной для начала синтеза другого белка.

Множество белков проходят существенную посттрансляционную модификацию. Полипептидная цепь, первичный продукт трансляции, скручивается и складывается в специфическую трехмерную структуру, определяемую аминокислотной последовательностью цепи.

Две и более полипептидные цепи, продукты одного или различных генов, могут объединяться, формируя один готовый белковый комплекс. Например, две цепи b-глобина и две цепи а-глобина нековалентно объединяются, формируя тетрамер молекулы гемоглобина. Белковые продукты также могут быть модифицированы химически, например добавлением в специфических местах метильных или фосфатных групп или углеводов.

Такие модификации могут иметь значимое влияние на функцию или количество модифицированного белка. Другие модификации могут включать расщепление белка с потерей специфических аминокислотных последовательностей после того, как они выполнили свою функцию, направив белок в правильную позицию в пределах клетки (например, белки, которые функционируют в пределах ядра или митохондрий) или разделение белковых молекул на меньшие полипептидные цепи.

Например, две цепи, формирующие готовый инсулин, содержащие одна 21, а вторая 30 аминокислот, первоначально представляют собой части проинсулина — первичного продукта трансляции из 82 аминокислот.

Транскрипция митохондриального генома

В предшествующих разделах описаны основы экспрессии генов, содержащихся в ядерном геноме. Митохондриальный геном имеет отличающуюся систему транскрипции и белкового синтеза. Для транскрипции митохондриального генома используется специализированная РНК-полимераза, закодированная в ядерном геноме, содержащая две взаимосвязанные последовательности промотора, для каждой нити кольцевой митохондриальной хромосомы. Каждая нить транскрибируется полностью, а полученные копии затем обрабатываются, порождая различные митохондриальные мРНК, тРНК и рРНК.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Изучение экспрессии генов в клетках мозга после смерти

Результаты исследования указывают на ряд удивительных изменений, в том числе на обнаруженные «зомби-гены»

В течение нескольких часов после смерти некоторые клетки головного мозга продолжают находится в активном состоянии. Часть из них даже значительно увеличивает свою активность.

Это открытие представлено сотрудниками Университета Иллинойса в Чикаго. Работа опубликована в журнале Scientific Reports.

Коллектив авторов анализировал экспрессию генов в тканях мозга, полученных во время рутинной нейрохирургии. Это проводилось несколько раз для того чтобы имитировать разные интервалы после смерти (в течение 24 часов). Оказалось, что некоторые гены усиливали свою экспрессию в этот период времени.

Эти «зомби-гены» были специфичны для одного типа клеток – воспалительных глиальных клеток. После «смерти» на протяжении нескольких часов они продолжали расти и расширять сеть своих отростчатых структур.

Это открытие достаточно логично укладывается в функции глиальных клеток, поскольку их основная задача заключается в очищении окружающих тканей от продуктов метаболизма после различных повреждений. Более важен другой контекст нового открытия: большинство исследований, проводящихся на тканях мозга, которые были получены пост-мортем, ставят перед собой цель определить эффективность различных препаратов для лечения психоневрологических заболеваний (например, аутизм, шизофрения, болезнь Альцгеймера и другие), но в этих исследованиях не учитывается тот факт, что после смерти некоторые гены и клетки остаются еще активными.

Согласно полученным данным, около 80% проанализированных генов оставались относительно активными в течение 24 часов – их экспрессия не подвергалась сильным изменениям. Среди них были и так называемые «гены домашнего хозяйства», ответственные за наиболее базовые клеточные функции. В то же время другая группа генов, ответственная за такие процессы как память, мышление и патологическая судорожная активность, резко деградировала в течение нескольких часов. Именно эти гены могут быть крайне важны для исследователей, изучающих шизофрению, болезнь Альцгеймера и эпилепсию. Третья группа генов, «зомби-гены», увеличивали свою активность, пик которой приходился на 12 часов пост-мортем.

Данное открытие вносит важный вклад в биологический контекст доклинических исследований, посвященных изучению психоневрологических заболеваний.

Источник

Что такое экспрессия в медицине генов

Что такое экспрессия в медицине генов. Смотреть фото Что такое экспрессия в медицине генов. Смотреть картинку Что такое экспрессия в медицине генов. Картинка про Что такое экспрессия в медицине генов. Фото Что такое экспрессия в медицине генов

Ведущая роль в обеспечении и поддержании гомеостаза, формировании согласованных реакций отдельных систем организма в ответ на воздействие внешних и внутренних факторов принадлежит иммунной системе. К центральным регуляторам гомеостаза относится цитокиновая система, обладающая широким спектром биологических эффектов [2]. Образование и высвобождение высокоактивных молекул жестко регулируется генетическими механизмами [9], которые до настоящего времени изучены недостаточно. Известно, что функционирование цитокиновой сети в норме и при патологии базируется на механизмах, лежащих в основе регуляции экспрессии генов цитокинов [5]. Экспрессия генов подразумевает под собой процесс реализации закодированной в структуре ДНК информации на уровне мРНК и белков и начинается с транскрипции их нуклеотидной последовательности. В норме многие гены не экспрессируются, а степень экспрессии других имеет высокую индивидуальную вариабельность. Патологический процесс может приводить к активации заинтересованных генов или к репрессии активных. Это предоставляет клеткам широкие возможности для изменчивости, обеспечивающей приспособленность их фенотипов к разнообразным условиям среды и физиологическим воздействиям. Часто гены экспрессируются последовательно: активация одного гена вызывает экспрессию другого или нескольких генов, что приводит к каскаду событий [11]. Уровень экспрессии в определенной степени зависит от полиморфизма генов. Однонуклеотидный полиморфизм заключается в отличии последовательности ДНК размером в один нуклеотид между гомологичными участками гомологичных хромосом. Такие отличия возникают в результате точечных мутаций. Влияние полиморфных вариантов на экспрессию обусловливает возможные сценарии развития заболевания. Это определяет необходимость исследования индивидуального генетического профиля для выработки стратегии превентивной и предикативной корректировки образа жизни каждого человека. Отметим, что изучение экспрессии отдельных генов цитокинов и их генных кластеров способствует решению одной из важнейших проблем молекулярной биологии – исследованию механизмов регуляции экспрессии генов эукариот [5]. Генетически детерминированная дисрегуляция цитокинов ведет к инициации не только хронических воспалительных процессов, но и к генерализированным нарушениям. Известно, что дисбаланс в продукции белков, например, семейства интерлейкин-1 (IL-1β, IL1RA, IL1RI), влияет на характер протекания воспалительных заболеваний и является одним из пусковых механизмов патологических процессов [10]. В нервной системе процессы постепенного и необратимого нарушения механизмов обеспечения структурной и функциональной целостности нейрона вызывают изменения в содержании цитокинов, нейротрофических факторов, нейропептидов и экспрессии различных «факторов выживания», которые защищают целостность генома и сохранение структуры ДНК. В последнем участвуют также нейрональные стволовые клетки, обеспечивающие компенсацию поврежденных нейронов и глии [1]. Следует отметить, что большинство цитокинов не синтезируется клетками вне воспалительной реакции и иммунного ответа. При нормальном физиологическом состоянии спектр детектируемых мРНК цитокинов узок и уровень экспрессии соответствующих генов невысок. При повреждении тканей, воспалении, опухолеобразовании и при многих других патологических процессах спектр экспрессирующихся генов цитокинов, обладающих местной и дистантной активностью, значительно расширяется, а уровень экспрессии генов, обладающих базальной активностью, многократно возрастает [27]. Сопоставление уровня мРНК и содержания биологически активных молекул важно для понимания процессов регуляции и активации иммунной системы, и может объяснить физиологическое состояние организма человека [12].

Важными характеристиками экспрессии генов цитокинов являются ее тканеспецифичность и зависимость от активации клеточных сигнальных путей [5]. Тканеспецифический характер формируется в процессе клеточной дифференцировки [23] и часто определяется присутствием в соответствующих клетках специфического набора транскрипционных факторов [28]. Каскад внутриклеточных сигнальных реакций, следующий за взаимодействием определённых лигандов с их рецепторами на поверхности лимфоцита, завершается формированием комплексов регуляторных районов генов цитокинов с конститутивными и/или индуцибельными транскрипционными факторами, запускающих инициацию или ингибирование экспрессии генов [17]. Уровень экспрессии рецепторов в определенной степени зависит от аллельных вариантов полиморфных локусов, частота встречаемости которых может иметь значительные различия при патологических процессах. Полиморфные генетические сайты могут рассматриваться как маркеры предрасположенности или резистентности к различным заболеваниям, в патогенезе которых играет роль цитокиновая сеть [18]. В последнее время накапливается все больше данных, свидетельствующих о том, что полиморфизм генов цитокинов и их рецепторов вносит существенный вклад в содержание конечных продуктов экспрессии, влияя тем самым и на процессы, которые регулируют эти медиаторы. Это может оказывать влияние на эффективность применения ингибитора транскрипции определенного цитокина в качестве метода терапии.

Для гена TNF (фактор некроза опухоли) и его рецепторов, а также гена IL1B (интерлейкин-1 бета) известен целый ряд полиморфных вариантов в промоторных и интронных областях, которые ассоциированы с повышенной или пониженной продукцией цитокина, а также с развитием целого ряда инфекционных, аутоиммунных и онкологических заболеваний, ключевую роль в которых играют цитокины [13]. В хромосомном регионе 6p21.3 локализованы два гена TNFA и TNFB, кодирующих белки суперсемейства TNF. TNF-α, кодируемый геном TNFA, является провоспалительным цитокином, который задействован в регуляции широкого спектра биологических процессов: пролиферации, дифференцировки, апоптоза клеток [25], коагуляции и метаболизма липидов [15]. Данный цитокин секретируется главным образом макрофагами, хотя его способны продуцировать и другие типы клеток, например, Т – и В-лимфоциты. Наработка TNF-α регулируется на транскрипционном и посттранскрипционном уровнях [14]. Он связывается со специфическими мембранными рецепторами, что приводит к активации факторов транскрипции, регулирующих гены интерлейкинов 1 и 6 (IL-1, IL-6), простагландинов, фактора активации тромбоцитов, факторов роста (TGF-β), гормонов, в частности, адреналина [8]. Развитие патологических процессов, ключевым цитокином в которых является TNF-α, может быть обусловлено уровнем экспрессии не только его самого, но и его рецепторов. TNF-α реализует свои эффекты через 2 типа рецепторов, которые могут существовать в мембранно-связанной и в растворимой форме: рецептор TNFI типа (TNFRI) известный как p55 или p60, и рецептор TNFII типа (TNFRII), обозначаемый как p75 или p80. От уровня их экспрессии зависят биологические эффекты этого медиатора. TNFRI конститутивно экспрессируется практически на всех клетках млекопитающих, тогда как TNFRII – преимущественно на клетках иммунной системы. Уровень экспрессии TNFRI и TNFRII может быть обусловлен аллельными вариантами кодирующих их генов, где в результате точечных мутаций может происходить изменение уровня транскрипции гена [7,13]. Следует отметить, что ген TNFA расположен в том же локусе, где закодированы молекулы главного комплекса гистосовместимости первого (HLA-A, B, C) и второго (HLA-DP, DQ, DR) классов. Промоторная область гена TNFA включает 8 полиморфных участков с единичными нуклеотидными заменами: – 1031T > C, – 863C > > A, – 857C > T, – 575G > A, – 376G > A, – 308G > A, – 244G > A, – 238G > A. Однако наиболее значимыми считаются однонуклеотидные замены гуанина на аденин в позициях – 308 и – 238, которые вызывают изменения уровня продукции TNF-α. Показано, что клетки доноров, гомозиготных по генотипуА/А, синтезируют в 3 раза больше цитокина, чем клетки лиц с генотипом G/G [22]. Еще одним полиморфным участком гена TNFA, влияющим на продукцию цитокина, является – 238G > A. Однако в данном случае замена гуанина на аденин ведет не к повышению, а к понижению продукции белка. Стимуляция клеток цельной крови липополисахаридом показала, что клетки с генотипом G/A синтезируют в 1,5 раза меньше TNF-α, чем клетки с генотипом G/G. Таким образом, однонуклеотидные замены в положениях – 308G > A и 238G > A гена TNFA ассоциированы с повышением и снижением уровня экспрессии соответственно. Полиморфизм – 308G > A гена TNFA влияет и на транскрипционную активность гена TNFB, локализованного в том же кластере [4]. Ген TNFB тандемно связан с геном TNFA внутри комплекса генов HLA на хромосоме 6. Полиморфизм в гене TNFB – замена аденина на гуанин в первом нитроне в позиции + 252, приводит к синтезу мутантного аллеля размером 5,5 т.п.н., тогда как размер аллеля дикого типа составляет 10,5 т.п.н [32]. В зависимости от исследованной популяции носительство различных TNFB-аллелей ассоциировано с повышенной или пониженной секрецией TNF-α. В частности обнаружено, что полиморфизм + 252A > G гена TNFB влияет на уровень секреции TNFα [4]. В результате транзиции + 252A > G значительно увеличивается и выработка TNF-β, зависящая от увеличения транскрипции гена, что подтверждено опытами in vitro [32]. Два диаллельных полиморфизма – – 308G > A гена TNFA и + 252A > G гена TNFB – ассоциированы с многофакторными заболеваниями, например, сахарным диабетом 1 типа [8].

Особый интерес представляет иммунорегуляторный медиатор IL-4 (интерлейкин-4), имеющий большое значение для регуляции многих клеточных процессов. IL-4 принимает участие в ограничении воспалительного ответа, подавляя секрецию провоспалительных цитокинов и регулируя, таким образом, тяжесть повреждения тканей. Для этого медиатора показано, что его экспрессия происходит с участием альтернативного сплайсинга [22]. Ген IL4 у человека экспрессируется в виде двух форм мРНК: полноразмерной формы, содержащей все 4 экзона и альтернативно сплайсированной, не содержащей 2-го экзона, названной IL-4δ2 [29]. Образование изоформм РНК IL-4 у взрослого человека имеет тканеспецифический характер: обычно мРНК IL-4δ2 преобладает над полноразмерной формой и обнаруживается в мононуклеарных клетках (МНК) периферической крови человека в минорных количествах, а также в клетках тимуса и бронхо-альвеолярного лаважа, клеточных линиях B95/8 и HL60 [22]. Данных об экспрессии гена IL4 недостаточно, а сведения по биологической активности противоречивы. Вместе с тем известно, что клеткам-эффекторам передается сигнал IL-4 с помощью белка-рецептора. Последний состоит из двух субъединиц: альфа-субъединицы, отвечающей за связывание с белком IL-4, и гамма-субъединицы, транскрипция, которой активируется белком IL-4. Ген IL4RA расположен на длинном плече хромосомы 16 (16p12.1) и существует в нескольких полиморфных вариантах. Полиморфизм гена IL4RA (1902А > G) приводит к замене аминокислоты глутамина на аргинин в 551 положении (551G > A), затрагивает структуру альфа-субъединицы рецептора и может влиять на передачу сигнала IL-4 [3]. Ген IL4 расположен на длинном плече хромосомы 5 (5q31.1), содержит 4 экзона и имеет размер 10 т.п.н. Один из полиморфных вариантов гена IL4 (– 590Т > С) связан с изменением уровня экспрессии. Данный полиморфизм ассоциирован с различными заболеваниями, включая атопический дерматит [21], болезнь Грейвса [19] и рассеянный склероз [20].

Важную роль в развитии и формировании многих патологических состояний играет противовоспалительный IL-10. Установлено, что IL-10 способен тормозить повреждение и тромбоз атеросклеротической бляшки благодаря угнетению активности макрофагов, которые являются основными триггерами гиперкоагуляции, ингибированию продукции провоспалительных цитокинов, снижению экспрессии тканевого фактора [6, 16]. Экспрессия IL-10 обеспечивает защиту нейронов и глиальных клеток мозга преимущественно за счет ингибирования проапоптических цитокинов и стимулирования защитных сигнальных реакций. Активация рецепторов IL-10 регулирует сигнальные процессы с участием Jak1 (янус киназа-1)/Stat3 (преобразователь сигнала и активатор транскрипции-3), MAPK (митоген-активируемая протеинкиназа), phosphokinase-3 (фосфокиназы-3) и NF-kappaB (ядерный фактор транскрипции «каппа-би»), в свою очередь сопряженных с контролем митохондриального апоптоза. Относясь к числу противовоспалительных цитокинов, IL-10 участвует в регуляции защитных процессов при нейродегенеративных расстройствах [30].В исследованиях на моно – и дизиготных близнецах установлено, что межиндивидуальная вариабельность по концентрации IL-10 в значительной мере (50–70 %) обусловлена генетическими факторами [26]. Значительное внимание уделяется поиску функционально значимых полиморфных вариантов гена IL10. Показано, что полиморфизм промоторных участков гена IL10 обусловливает межиндивидуальную вариабельность по степени продукции IL-10 при антигенной стимуляции и формировании воспалительных клеточных реакций [31]. Продемонстрировано, что генотип – 627C/C гена IL10 ассоциирован с повышенным, а генотип – 627C/A – с пониженным содержанием IL-10 в крови, с более низким уровнем экспрессии гена IL10 [24, 31], что является стимулом к развитию патологий нервной системы.

Таким образом, исследованиями многих авторов показано, что цитокиновая система относится к центральным регуляторам гомеостаза, обладая широким спектром биологических эффектов. Функционирование цитокиновой сети базируется на механизмах, лежащих в основе регуляции экспрессии генов цитокинов. Ключевую роль в развитии и течении многих патологических процессов в организме человека могут играть генетические факторы: аллельные варианты полиморфных локусов, эпистатическое влияние и экспрессия генов, которые важно учитывать при диагностике и выработке схемы лечения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *