Что такое экзопланета в астрономии определение
Что такое экзопланеты и как ищут жизнь во Вселенной
Что такое экзопланета
В слове «экзопланета» приставка «экзо» означает «вне», «снаружи». Получается, что экзопланеты — это все планеты за пределами Солнечной системы. Большинство из них, как и Земля, вращаются вокруг звезд, но встречаются и не привязанные к орбите определенной звезды.
Большинство открытых экзопланет находятся в одном регионе нашей Галактики — внутри Млечного пути. При помощи мощных телескопов ученые измеряют размеры планет, их состав и поверхность. Большая часть открытых экзопланет состоят из тех же элементов, что и планеты Солнечной системы. Отличаются только комбинации и соотношение: на некоторых больше воды и льда, на других — железа и углерода. При этом нет ни одной планеты, которая была бы идентична Земле или другим телам Солнечной системы.
Первую экзопланету обнаружили в 1992 году. С тех пор астрономы идентифицировали тысячи планет, и их число постоянно растет. С Земли не всегда просто обнаружить новые тела: не хватает мощности телескопов, и обзор может перекрываться звездами или другими планетами. Количество открытых небесных объектов может увеличиться в разы, как только ученые наладят технологию запуска космических роботизированных телескопов, которые будут отправлять на Землю данные о своих наблюдениях. Часть таких телескопов уже запущена в космос, но развитие направления поможет ускорить процесс открытия и изучения небесных тел.
Какие бывают типы экзопланет
Наша Галактика состоит из огромного количества звезд — не менее 100 млрд, включая Солнце. Если представить, что вокруг каждой звезды вращается минимум одна планета, то количество неоткрытых экзопланет представляется астрономическим. При этом ученые предполагают, что у каждой звезды есть своя система, в которую входит сразу несколько планет. В таком случае количество экзопланет внутри одного Млечного Пути может составлять триллионы.
Тысячи лет до нашего поколения люди догадывались о существовании планет за пределами Солнечной системы. Сейчас мы точно знаем, что экзопланеты существуют и их много, но все еще не можем добраться ни до одной из них. У ближайшей к Земле звезды — Проксима Центавры — есть минимум одна планета. Вероятно, это планета земного типа, и на ней может находиться вода. Но лететь до нее придется более четырех световых лет, при этом ученые пока не могут с точностью описать свойства планеты и сказать, подходит ли она для жизни. Остальные экзопланеты находятся на расстоянии сотен или тысяч световых лет от нас, и посетить их пока нет никакой возможности.
С момента открытия первой экзопланеты прошло почти 30 лет, но мы до сих пор не знаем о всем разнообразии существующих планет. Поэтому их деление скорее условно.
Газовые гиганты
В космосе встречаются газовые гиганты, наподобие Юпитера и Сатурна. Сейчас известно о 1367 экзопланетах такого типа. Самые известные из них:
51 Pegasi b — газовый гигант с атмосферной температурой более 1000 °C. Первая открытая планета из тех, что вращаются вокруг звезд солнечного типа.
KELT-9 b — cамая горячая известная экзопланета. Температура на дневной стороне может подниматься до 4600 °C. Находится на расстоянии 667 световых лет от Земли.
Нептунианские экзопланеты
Маленькие планеты с атмосферой, на которых преобладают водород и гелий. Открыто 1484 планеты, самые известные:
Kepler-1655 b — экзопланета, похожая на Нептун. Полный оборот вокруг звезды (то есть, один год) на Кеплере, проходит за 11,9 дней. Экзопланету открыли в 2018 году.
GJ 436 b — экзопланета, которая находится относительно близко к Земле: лететь до нее придется 32 года.
Суперземли
Экзопланеты из газа, горных пород и их комбинаций, которые в несколько раз больше Земли. Открыто 1346 планет, самые известные:
Barnard’s Star b — вторая самая близкая к Земле экзопланета, лететь до нее шесть лет. Планету открыли в 2018 году. Она в 3,2 раза больше нашей планеты. Звезда, вокруг которой вращается экзопланета, дает ей только 2% энергии, которую получает Земля от Солнца.
GJ 15 A b — экзопланета, которая вращается вокруг звезды красного карлика в 11 световых годах от Земли. В ее системе есть еще одна планета, что делает ее ближайшей к нам суперземлей со своей системой.
Планеты земного типа
Скалистые тела, похожие на Землю, Марс или Венеру. Открыто 164 планеты, самые известные:
TRAPPIST-1 e — ее масса составляет 60% массы Земли, а год на планете длится 6,1 дня. Планету открыли в 2017 году.
TRAPPIST-1 d — как и Земля — третья планета от своей звезды. Скалистая планета с температурой поверхности около 2290 °C.
Как ищут экзопланеты
Экзопланеты находят при помощи мощных телескопов, которые располагаются на Земле или летают в космосе. Изучение неба через космический телескоп обсерватории NASA «Кеплер» показало, что в Млечном пути находится больше планет, чем звезд. Данные рассчитывались через статистическую оценку. Сейчас ученым известно, что в Галактике сильно распространены маленькие планеты. Однако открывать их сложно: в силу их размера они могут быть не видны в телескоп. Все усложняется тем, что от них, в отличие от звезд, не исходит света. Вдобавок яркий свет звезды может скрывать планету: это как пытаться рассмотреть пылинку на включенной лампе.
Чтобы найти экзопланету, астрономы пытаются обнаружить признаки нахождения планеты у материнской звезды. Свойства звезды могут меняться, если вокруг нее вращается планета. Во-первых, планета влияет на вращение: звезда начинает немного раскачиваться, и специальное оборудование может уловить это движение. Планета — единственное, что может повлиять на такое изменение. Во-вторых, мощный телескоп может поймать небольшую тень, которая исходит от планеты на звезду. Существуют и другие способы поиска, но эти два считаются основными и применяются чаще всего.
Несмотря на существование таких способов, ученым пока не хватает мощностей, чтобы открыть все планеты. До сих пор не было обнаружено ни одной системы, похожей на Солнечную. Вероятно, это говорит о том, что современные телескопы не могут уловить маленькие планеты. К тому же многие из них вращаются на далеком от звезд расстоянии, и на них почти не падает свет, что делает их поиск почти невозможным с далекого расстояния.
Актуальные прогнозы исследований экзопланет
Мощные телескопы и технологии нового поколения помогут открыть все большее количество экзопланет. Они помогут приблизить нас к поиску планет, похожих на Землю: такие вращаются относительно далеко от звезд и имеют маленькие размеры.
Космический телескоп Джеймса Уэбба
Гигантский телескоп размером с теннисный корт будет запущен в космос из Французской Гвианы в 2021 году. Телескоп будет наблюдать Вселенную в инфракрасном свете, изучать формирование планетных систем и состав атмосфер экзопланет. Ожидается, что он станет главным космическим инструментом нынешнего десятилетия.
Космическая платформа: телескоп Нэнси Роман
В середине 2020-х годов в космос запустят электростанцию телескопов, которая поможет лучше изучить экзоланеты. Окно зрения этой станции будет в 100 раз превышать окно самого мощного телескопа NASA, который сейчас занимается поиском планет. Главная цель — изучение темной материи и темной энергии, но в рамках своей программы он будет делать и фотографии экзопланет. С его помощью начнут исследовать плотные звезды Млечного Пути, а на их фоне можно поймать и новые планеты.
Зачем изучать экзопланеты
Теоретически, изучение экзопланет поможет ответить на вопрос: «одни ли мы в этой Вселенной?». Поиск новых планет — одно из самых быстроразвивающихся направлений астрономии. Изучение разных космических тел поможет лучше понять, как устроена Солнечная система, как она сформировалась, и есть ли в мире похожие группы планет. А также, существует ли планета, настолько похожая на Землю, что на нее можно переехать.
В погоне за этими ответами ученые делают новые открытия и раскрывают детали Вселенной. В частности, находят возрастные планеты и делают предположения о том, как может развиваться Солнечная система и какие у нее сроки жизни.
Основная цель направления — поиск признаков жизни во Вселенной. Небо экзопланет может содержать элементы, которые помогут ответить на этот вопрос.
Экзопланета
Подавляющее большинство открытых экзопланет обнаружено с использованием различных непрямых методик детектирования, а не визуального наблюдения. Большинство известных экзопланет — газовые гиганты и более походят на Юпитер, чем на Землю. Очевидно, это объясняется ограниченностью методов обнаружения (легче обнаружить короткопериодичные массивные планеты).
Содержание
История открытий
Исторически первым заявлением о возможности существования планетной системы у другой звезды было сообщение капитана Джейкоба (Capt. W. S. Jacob), астронома Мадрасской обсерватории (East India Company’s Madras Observatory), сделанное в 1855 г. В нём сообщалось о «высокой вероятности» существования «планетарного тела» в двойной системе 70 Змееносца. Позже, в 1890-х годах, астроном Томас Дж. Дж. Си из Чикагского университета и Военно-Морская обсерватория США подтвердили наличие в системе 70 Змееносца несветящего тела (невидимого спутника) с периодом обращения в 36 лет, однако расчёты Ф. Р. Мультона опровергают подтверждения, выполненные Си, доказывая неустойчивость подобной системы. Поэтому на данный момент (2012 год) существование планетной системы у звезды 70 Змееносца не признаётся официальной наукой.
Первые попытки найти планеты вне солнечной системы были связаны с наблюдениями за положением близких звёзд. Ещё в 1916 году Эдуард Барнард обнаружил красную звездочку, которая «быстро» смещалась по небу относительно других звёзд. Астрономы назвали её Летящей звездой Барнарда. Это одна из ближайших к нам звёзд и по массе в семь раз меньше Солнца. Исходя из этого, влияние на неё планет, если они есть, должно было быть заметным. В начале 1960-х годов Питер Ван де Камп объявил, что открыл у неё спутник массой с Юпитер. Однако Дж. Гейтвуд в 1973 году выяснил, что звезда Барнарда движется без колебаний и, значит, массивных планет не имеет.
В конце 1980-х годов многие группы астрономов начали систематическое измерение скоростей ближайших к Солнцу звёзд, ведя специальный поиск экзопланет с помощью высокоточных спектрометров.
Впервые внесолнечная планета была найдена канадцами Б. Кэмпбеллом, Г. Уолкером и С. Янгом в 1988 году у оранжевого субгиганта Гамма Цефея A, но подтверждена лишь в 2002 году.
В 1989 году сверхмассивная планета (или коричневый карлик) была найдена Д. Латамом около звезды HD 114762. Однако её планетный статус был подтверждён только в 1999 году.
Первые экзопланеты были зарегистрированы у нейтронной звезды PSR 1257+12, их открыл астроном Александр Вольшчан [6] в 1991 году. Эти планеты были признаны вторичными, возникшими уже после взрыва сверхновой.
В 1995 году астрономы Мишель Майор (Michel Mayor) и Дидье Келос (англ.) русск. (Didier Queloz) с помощью сверхточного спектрометра обнаружили покачивание звезды 51 Пегаса с периодом 4,23 сут. Планета, вызывающая покачивания, напоминает Юпитер, но находящийся в непосредственной близости от светила. В среде астрономов планеты этого типа так и называют «горячие юпитеры».
В дальнейшем, путём измерения лучевой скорости звёзд для поиска их периодического доплеровского изменения (метод Доплера) было обнаружено более сотни экзопланет.
В августе 2004 года в системе звезды μ Жертвенника была обнаружена первая планета—горячий нептун. Она обращается вокруг светила за 9,55 суток, на расстоянии 0,09 а. е., температура на поверхности
Первая сверхземля, обращающаяся вокруг нормальной звезды (а не пульсара), была обнаружена в 2005 году около звезды Глизе 876. Её масса — 7,5 масс Земли.
В 2004 году было получено первое изображение (в инфракрасных лучах) кандидата в экзопланеты у коричневого карлика 2M1207.
Инструменты и проекты изучения экзопланет
Астрономические спутники
Наземные обсерватории
Ведущие наблюдение транзитным методом
Ведущие наблюдение методом лучевых скоростей (доплеровским)
Также в будущем ожидаются миссии:
Методы поиска экзопланет
Номенклатура
Открытым экзопланетам в настоящее время присваиваются названия состоящие из названия звезды, около которой обращается планета, и дополнительной строчной буквы латинского алфавита, начиная с буквы «b» (например: 51 Пегаса b). Следующей планете присваивается буква «c», потом «d» и так далее по алфавиту. При этом буква «a» в названии не используется, так как такое название подразумевало бы собственно саму звезду. Кроме того, следует обратить внимание на то, что планетам присваиваются названия в порядке их открытия, а не по мере удаления от звезды обращения. То есть, планета «с» может быть ближе к звезде, чем планета «b», просто открыта она была позднее (как, например, в системе Глизе 876).
В названиях экзопланет существовало исключение. Дело в том, что до открытия системы 51 Пегаса в 1995 году экзопланеты называли иначе. Первые обнаруженные экзопланеты у пульсара PSR 1257+12 были названы прописными буквами PSR 1257+12 B и PSR 1257+12 C. Кроме того, после обнаружения новой, более близкой к звезде планеты, она была названа PSR 1257+12 A, а не D. Впоследствии эти планеты были переименованы во избежание путаницы в соответствии с современной системой именования экзопланет.
Некоторые экзопланеты имеют дополнительные неофициальные «прозвища» (как, например, 51 Пегаса b неофициально названа «Беллерофонт»). Однако в научном сообществе в настоящее время присвоение официальных личных имён планетам считается непрактичным и, соответственно, широко не распространено.
Свойства экзопланет
Планеты обнаружены приблизительно у 10 % звёзд, включенных в программы поисков. Их доля растёт по мере накопления данных и совершенствования техники наблюдения.
Поначалу большинством открытых экзопланет были планеты-гиганты (так как планеты других типов обнаружить труднее). Однако к настоящему времени (2012 год) открыто множество планет с массами порядка массы Нептуна и ниже. Из 2326 кандидатов, обнаруженных телескопом Кеплер, 207 имеют примерно земной размер, 680 имеет размеры суперземли, 1181 — Нептуна, 203 — размер, сравнимый с Юпитерианским, и 55 — больший, чем у Юпитера.
Наблюдается зависимость количества планет-гигантов от содержания тяжелых элементов (металлов) в звездах. Системы с планетами-гигантами встречаются также преимущественно у звёзд солнечного типа (классов K5-F5), в то время как у красных карликов их доля значительно меньше (у 200 наблюдаемых красных карликов обнаружены пока что только три подобные системы). Последние открытия, сделанные методом гравитационного микролинзирования, говорят о широкой распространённости систем с планетами средней массы типа Урана и Нептуна вместо газовых гигантов. Это в первую очередь относится к маломассивным звёздам и звёздам с низким содержанием металлов.
Для ряда планет получена оценка их диаметра, что позволяет определить их плотность, а также строить предположения относительно наличия массивных ядер, состоящих из тяжёлых элементов. Европейские астрономы под руководством Тристана Гийо (Tristan Guillot) из Обсерватории Лазурного берега (Франция), установили, что при сравнении плотности планет с содержанием металлов в их звездах имеется определённая корреляция. Планеты, сформированные вокруг звёзд, которые являются столь же богатыми металлом, как наше Солнце, имеют маленькие ядра, в то время как планеты, звёзды которых содержат в два-три раза больше металлов, имеют намного большие ядра.
Наиболее близкой по условиям к Земле экзопланетой, известной на 2009 год, является Глизе 581 c, температура на которой, по предварительным оценкам, находится в диапазоне 0—40 °C. Также теоретически на этой планете возможно существуют запасы жидкой воды (что подразумевает возможность существования жизни).
Экзопланеты: как их открывают и изучают
Вокруг звезд могут быть планеты, а на этих планетах в теории может быть жизнь. Как ее найти?
Если у кого-то что-то и ассоциируется со словом «экзопланета», то обычно это что-то вроде «планета, похожая на Землю». На самом деле экзопланета — это просто любая планета за пределами нашей Солнечной системы.
Что такое экзопланета
Для того чтобы некое небесное тело можно было считать планетой, оно должно удовлетворять трем требованиям. Во-первых, оно должно вращаться вокруг звезды (вокруг Солнца, а если вокруг другой звезды — это как раз таки будет экзопланета). Но на примере нашей Солнечной системы мы знаем, что вокруг Солнца вращается еще много чего — например, пояс метеоритов.
Поэтому добавляем во-вторых: масса планеты должна быть меньше массы звезды (то есть там не должны идти самоиндуцированные термоядерные реакции), но больше массы астероида, иначе собственной гравитации будет недостаточно для того, чтобы небесное тело стало округлым.
Наконец, в-третьих, вблизи орбиты планеты должно быть пространство, свободное от других тел. Именно из-за этого Плутон в 2006 году разжаловали из планет в карликовые планеты — рядом с его орбитой много похожих тел, просто Плутон — одно из самых больших.
Несмотря на то что звезд на небе очень много и по аналогии с Солнечной системой может показаться, что вокруг них должно быть полно экзопланет, сейчас науке известно всего лишь чуть более 2000 объектов такого рода. Да и вообще наука начала заниматься ими удивительно недавно — около 20 лет назад.
Хотя сложно сказать, в каком именно году открыли первую экзопланету. Можно считать, что в 1995-м — именно тогда швейцарские ученые Майор и Келос с точностью доказали, что на орбите звезды Peg 51 есть планета, напоминающая Юпитер. В 1993-м польский астроном Александр Вольщан обнаружил что-то вроде экзопланеты возле нейтронной звезды, но поскольку нейтронная звезда — не совсем звезда, то и найденный объект нельзя в полной мере считать экзопланетой.
В 1989 году была обнаружена сверхмассивная то ли экзопланета, то ли коричневый карлик (тут пока нет определенности), но ее существование подтвердили только в 1999-м. Ну а в 1988-м была найдена экзопланета в созвездии Цефея, но то, что это действительно планета, было подтверждено только в 2002-м.
В общем, область молодая, поэтому сейчас ученые активно занимаются поиском и изучением экзопланет. И искать их можно несколькими способами.
Как ищут экзопланеты
Первый вариант — следить за движением звезды. Дело в том, что звезда и планета взаимодействуют между собой. То есть не планета вращается вокруг звезды, а на самом деле вся эта система вращается вокруг своего центра масс, расположенного где-то поблизости от центра звезды.
Планета слишком мала, чтобы с Земли или находящихся неподалеку спутников можно было бы измерять какие-либо ее параметры, а вот спектр свечения звезды получить можно. Ну а поскольку звезда, как мы только что выяснили, движется, в этом спектре будет наблюдаться доплеровский сдвиг — если его изолировать и измерять в течение достаточно продолжительного времени, можно получить период вращения звезды. Ну а оценив массу звезды и зная период вращения, можно получить массу планеты. Вуаля, мы открыли экзопланету! В общем-то, примерно половина известных экзопланет была открыта именно так.
Более простой на словах, но более сложный на деле способ — пронаблюдать прохождение планеты по диску звезды. Если расположить телескоп в предполагаемой плоскости орбиты планеты, рано или поздно мы заметим, что свечение звезды станет чуть слабее из-за ее частичного затмения планетой.
Проблема в том, что характерное значение падения блеска звезды в этом случае — примерно 0,0002%. То есть, во-первых, нужны очень высокоточные приборы. А во-вторых, как известно, на звезде бывают пятна, которые при таком способе измерений легко принять за искомую планету. Ну и в-третьих, между телескопом и звездой попросту мог пролетать космический мусор, частично затмив ее, и это тоже нужно не принять за планету.
Еще один способ называется микролинзированием. Согласно современной теории гравитации, тела искажают пространство вокруг себя, и чем массивнее тело, тем больше эти искажения. В результате, если между наблюдателем и исследуемым небесным телом пролетает некий массивный объект, из-за искажения можно наблюдать усиление свечения исследуемого тела — этакую вспышку.
Но видно ее, только если объект-линза светится достаточно слабо. То, что ситуация будет удовлетворять всем этим условиям, — событие маловероятное, так что следить надо сразу за многими звездами: вдруг с какой-то это произойдет? Это стало возможным с появлением ПЗС-матриц с большим количеством пикселей.
Космический телескоп Kepler снова работает: http://t.co/BlcHpRfFSh. И уже даже успел обнаружить экзопланету. pic.twitter.com/O0S0NAJldd
Микролинзирование удобно по двум причинам. Во-первых, это самый надежный способ. Во-вторых, для того, чтобы обнаружить экзопланету при помощи микролинзирования, не нужно находиться в плоскости орбиты этой планеты.
Четвертый способ может выглядеть немного курьезно, тем не менее он работает — это определение наличия планеты по так называемому таймингу. Идея вот в чем: если вы наблюдаете какой-то циклический процесс с участием небесных тел, но его цикл почему-то сбивается, значит, в процессе принимает участие еще какое-то небесное тело, которое влияет на этот цикл. Вполне возможно, что это экзопланета. Таким образом можно открывать экзопланеты возле двойных звезд или пульсаров — систем с хорошо прослеживаемыми циклами.
Еще пара способов, значительно менее распространенных, — это измерение точного местоположения звезды и непосредственное наблюдение экзопланет на снимках, сделанных телескопами.
Зачем ищут экзопланеты
Почему люди ищут и исследуют экзопланеты, в общем-то, вполне понятно. Человечество с незапамятных времен привлекал космос, и, как только оно могло начать изучение каких-либо новых космических объектов, оно без промедления начинало. Так было со звездами, со Вселенной целиком, так же вышло и с планетами.
Ну и конечно, людей всегда интересовал вопрос существования жизни где-то помимо Земли. Так где же ей существовать, если не на экзопланетах? Собственно, многие потому и ассоциируют слово «экзопланета» с «планетой, похожей на Землю», — самое громкое освещение в новостях получают открытия экзопланет, расположенных в так называемой обитаемой зоне. То есть там, где не слишком горячо и не слишком холодно для существования жизни, основанной на воде.
«Не слишком горячо и не слишком холодно» задает некий диапазон расстояний до звезды, вокруг которой обращается экзопланета. Если удается получить спектр отражения этой экзопланеты, можно узнать, есть ли на ней вода. Правда, пока это получается только предполагать исходя из параметров планеты.
Например, не так давно телескопом Kepler на границе созвездий Лебедя и Лиры была открыта экзопланета Kepler-452b, которую в NASA на радостях окрестили Новой Землей.
«Двойник» Земли Kepler-452b: http://t.co/AD4m4ElXBZ. Первая экзопланета, чьё существование считается доказанным. pic.twitter.com/6dkhNdMRPk
Звезда, вокруг которой вращается Kepler-452b, всего на 10% тяжелее Солнца, период обращения вокруг нее открытой экзопланеты составляет 385 суток, а траектория ее движения совпадает с орбитой Земли. Kepler-452b имеет твердую поверхность, а ее масса на 60% больше массы нашей планеты. То есть она действительно в достаточной мере похожа на Землю.
Вот только находится она от нас на расстоянии 1400 световых лет. Для сравнения: ближайшая к нам звезда (кроме Солнца) расположена на расстоянии 4,2 светового года. Но выяснить, есть ли жизнь на Kepler-452b, все равно интересно. Вдруг действительно есть?