Что такое электрические нагревательные сопротивления
Электрические нагревательные элементы. Их виды, конструкция, подключение и проверка.
Электрические нагревательные элементы применяются в бытовой и промышленной технике. Применение различных нагревателей известно всем. Это электрические плиты, жарочные шкафы и духовки, электрокофеварки, электрические чайники и отопительные приборы всевозможных конструкций.
Электрические водонагреватели, чаще именуемые бойлерами, тоже содержат нагревательные элементы. Основой многих нагревательных элементов служит проволока с высоким электрическим сопротивлением. И чаще всего эта проволока изготовлена из нихрома.
Открытая нихромовая спираль
Самым старым нагревательным элементом является, пожалуй, обычная нихромовая спираль. Когда-то давно, в ходу были самодельные электрические плитки, кипятильники для воды и обогреватели типа «козёл». Имея под рукой нихромовый провод, которым можно было «разжиться» на производстве, изготовить спираль требуемой мощности не представляло никаких проблем.
Известно было, какого диаметра провод и какая длина требуется для намотки спирали нужной мощности. Эти магические числа до сих пор можно найти в сети интернет. На рисунке показана таблица, где приведены данные о спиралях различной мощности при напряжении питания 220В.
Расчет электрической спирали нагревательного элемента
Здесь все просто и понятно. Задавшись требуемой мощностью и диаметром нихромового провода, имеющимся под рукой, остается только отрезать кусок нужной длины и навить его на оправку соответствующего диаметра. При этом в таблице указана длина получившейся спирали. А что делать, если имеется провод с диаметром не указанным в таблице? В этом случае спираль придется просто рассчитать.
Как рассчитать нихромовую спираль
При необходимости рассчитать спираль достаточно просто. В качестве примера приведен расчет спирали из нихромовой проволоки диаметром 0,45 мм (такого диаметра в таблице нет) мощностью 600 Вт на напряжение 220 В. Все расчеты выполняются по закону Ома.
Сначала следует рассчитать ток, потребляемый спиралью.
I = P/U = 600/220 = 2,72 A
Для этого достаточно заданную мощность поделить на напряжение и получить величину тока, проходящего через спираль. Мощность в ваттах, напряжение в вольтах, результат в амперах. Все согласно системе СИ.
По известному теперь току рассчитать требуемое сопротивление спирали достаточно просто: R = U/I = 220/2,72 = 81 Ом
Формула для подсчета сопротивления проводника R=ρ*L/S,
где ρ – удельное сопротивление проводника (для нихрома 1.0÷1.2 Ом•мм2/м), L — длина проводника в метрах, S – сечение проводника в квадратных миллиметрах. Для проводника диаметром 0,45 мм сечение составит 0,159 мм2.
Отсюда L = S * R / ρ = 0.159 * 81 / 1.1 = 1170 мм, или 11,7 м.
В общем, получается не столь уж сложный расчет. Да собственно и изготовление спирали не так уж и сложно, что, несомненно, является достоинством обычных нихромовых спиралей. Но это достоинство перекрывается множеством недостатков, присущих открытым спиралям.
Прежде всего, это достаточно высокая температура нагрева – 700…800˚C. Нагретая спираль имеет слабое красное свечение, случайное прикосновение к ней может причинить ожог. Кроме того возможно поражение электрическим током. Раскаленная спираль выжигает кислород воздуха, привлекает к себе пылинки, которые выгорая, дают весьма неприятный аромат.
Но главным недостатком открытых спиралей следует считать их высокую пожароопасность. Поэтому пожарная охрана попросту запрещает применение обогревателей с открытой спиралью. К таким обогревателям, прежде всего, относится, так называемый «козел», конструкцию которого можно посмотреть на видео.
Вот такой вот получился дикий «козел»: сделан он нарочито небрежно, просто, даже очень плохо. Пожара с таким обогревателем ждать придется недолго. Более совершенная конструкция подобного отопительного прибора показана на рисунке ниже.
Обогреватель типа ПЭТ 1 кВт, 220 В
Нетрудно видеть, что спираль закрыта металлическим кожухом, именно это предотвращает прикосновение к разогретым токоведущим частям. Пожароопасность такого устройства намного меньше, чем показанного на предыдущем видео.
Обогреватель рефлекторного типа
Совершенно очевидно, что различные обогреватели с открытой спиралью можно, вопреки требованиям пожарной инспекции, использовать лишь под неусыпным присмотром: ушел из помещения – выключи обогреватель! Еще лучше просто отказаться от использования обогревателей подобного типа.
Электрические нагревательные элементы с закрытой спиралью
Чтобы избавиться от открытой спирали, были изобретены Трубчатые Электрические Нагреватели – ТЭНы. Конструкция ТЭНа показана на рисунке ниже.
Конструкция ТЭНа
Нихромовая спираль 1 спрятана внутри тонкостенной металлической трубки 2. Спираль изолирована от трубки наполнителем 3 с высокой теплопроводностью и высоким электрическим сопротивлением. В качестве наполнителя чаще всего применяется периклаз (кристаллическая смесь окиси магния MgO, иногда с примесями других окислов).
После заполнения изолирующим составом трубку опрессовывают, и под большим давлением периклаз превращается в монолит. После такой операции спираль жестко фиксируется, поэтому электрический контакт с корпусом – трубкой исключен полностью. Конструкция получается настолько прочной, что любой ТЭН можно изгибать, если того требует конструкция отопительного прибора. Некоторые ТЭНы имеют весьма причудливую форму.
Спираль соединяется с металлическими выводами 4, которые выходят наружу через изоляторы 5. Подводящие провода присоединяются к резьбовым концам выводов 4 с помощью гаек и шайб 7. Крепление ТЭНов в корпусе устройства осуществляется при помощи гаек и шайб 6, обеспечивающих, при необходимости, герметичность соединения.
При соблюдении условий эксплуатации подобная конструкция достаточно надежна и долговечна. Именно это и привело к весьма широкому применению ТЭНов в устройствах различного назначения и конструкции.
Трубчатые электрические нагревательные элементы
По условиям эксплуатации трубчатые электрические нагревательные элементы делятся на две большие группы: воздушные и водяные. Но это просто такое название. На самом деле воздушные ТЭНы предназначены для работы в различных газовых средах. Даже обычный атмосферный воздух является смесью нескольких газов: кислорода, азота, углекислого газа, имеются даже примеси аргона, неона, криптона и т.д.
Воздушная среда бывает самой разнообразной. Это может быть спокойный атмосферный воздух или поток воздуха, движущийся со скоростью до нескольких метров в секунду, как в тепловентиляторах или тепловых пушках.
Разогрев оболочки ТЭНа может достигать 450 ˚C и даже более. Поэтому для изготовления внешней трубчатой оболочки применяются различные материалы. Это может быть обычная углеродистая сталь, нержавеющая сталь или жаропрочная, жаростойкая сталь. Все зависит от окружающей среды.
Для улучшения теплоотдачи некоторые ТЭНы снабжаются ребрами на трубках в виде навитой металлической ленты. Такие нагреватели называются оребренными. Применение таких элементов наиболее целесообразно в движущейся воздушной среде, например, в тепловентиляторах и тепловых пушках.
Водяные трубчатые электрические нагревательные элементы также применяются не обязательно в воде, это общее название различных жидкостных сред. Это может быть масло, мазут и даже различные агрессивные жидкости. Жидкостные трубчатые электрические нагревательные элементы применяются в электрических котлах, дистилляторах, электрических опреснителях морской воды и просто в титанах для кипячения питьевой воды.
Теплопроводность и теплоемкость воды намного выше, нежели у воздуха и других газовых сред, что обеспечивает, по сравнению с воздушной средой, лучший, более быстрый, отвод тепла от ТЭНа. Поэтому при одинаковой электрической мощности водяной нагреватель имеет меньшие геометрические размеры.
Как избавиться от накипи и продлить срок жизни ТЭНа
Кроме химических средств для защиты от накипи используются различные устройства. Прежде всего, это магнитные преобразователи воды. В мощном магнитном поле кристаллы «жестких» солей меняют свою структуру, превращаются в хлопья, становятся мельче. Из таких хлопьев накипь образуется менее активно, большая часть хлопьев просто вымывается потоком воды. Этим и достигается защита нагревателей и трубопроводов от накипи. Магнитные фильтры-преобразователи выпускаются многими зарубежными фирмами, такие фирмы существуют и в России. Подобные фильтры выпускаются как врезного, так и накладного типа.
Электронные умягчители воды
В последнее время все более популярными становятся электронные умягчители воды. Внешне все выглядит очень просто. На трубу устанавливается небольшая коробочка, из которой выходят провода-антенны. Провода накручиваются вокруг трубы, при этом даже не надо счищать краску. Установить прибор можно в любом доступном месте, как показано на рисунке ниже.
Электронный умягчитель воды
Единственное, что потребуется для подключения прибора, это розетка на 220В. Прибор рассчитан на долговременное включение, его не надо периодически отключать, поскольку выключение приведет к тому, что вода снова станет жесткой, опять будет образовываться накипь.
Принцип работы прибора сводится к излучению колебаний в диапазоне ультразвуковых частот, которые могут достигать до 50КГц. Частота колебаний регулируется с помощью пульта управления прибора. Излучения производятся пакетами по нескольку раз в секунду, что достигается использованием встроенного микроконтроллера. Мощность колебаний невелика, поэтому никакой угрозы для здоровья человека подобные приборы не представляют.
Целесообразность установки подобных приборов определить достаточно легко. Все сводится к тому, чтобы определить, насколько жесткая вода течет из водопроводной трубы. Тут даже не надо никаких «заумных» приборов: если после мытья ваша кожа становится сухой, от брызг воды на кафельной плитке появляются белые разводы, в чайнике появляется накипь, стиральная машина стирает медленнее, чем в начале эксплуатации – однозначно из крана течет жесткая вода. Все это может привести к выходу из строя нагревательных элементов, и, следовательно, самих чайников или стиральных машин.
Жесткая вода плохо растворяет различные моющие средства – от обычного мыла до супермодных стиральных порошков. В результате порошков приходится класть больше, но это помогает мало, так как кристаллы солей жесткости задерживаются в тканях, качество стирки оставляет желать лучшего. Все перечисленные признаки жесткости воды красноречиво говорят о том, что необходимо устанавливать умягчители воды.
Подключение и проверка ТЭНов
При подключении ТЭНа должен использоваться провод подходящего сечения. Здесь все зависит от тока, протекающего через ТЭН. Чаще всего известны два параметра. Это мощность самого нагревателя и напряжение питания. Для того, чтобы определить ток, достаточно разделить мощность на напряжение питания.
Простой пример. Пусть имеется ТЭН мощностью 1 КВт (1000 Вт) на напряжение питания 220 В. Для такого нагревателя получается, что ток составит
I = P/U = 1000/220 = 4,545A.
Согласно таблицам, размещенным в ПУЭ, такой ток может обеспечить провод сечением 0,5 мм2 (11 А), но с целью обеспечения механической прочности лучше применить провод сечением не менее 2,5 мм2. Как раз таким проводом чаще всего выполняется подвод электричества к розеткам.
Но перед тем, как производить подключение, следует убедиться в исправности даже нового, только что купленного ТЭНа. Прежде всего, надо измерить его сопротивление и проверить целостность изоляции. Сопротивление ТЭНа достаточно просто рассчитать. Для этого надо напряжение питания возвести в квадрат, и поделить на мощность. Например, для нагревателя мощностью 1000 Вт этот расчет выглядит так:
Такое сопротивление должен показать мультиметр при подключении его к выводам ТЭНа. Если же спираль оборвана, то, естественно, мультиметр покажет обрыв. Если взять ТЭН иной мощности, то сопротивление, естественно, будет другим.
Проверка целостности изоляции
Для проверки целостности изоляции следует измерить сопротивление между любым из выводов и металлическим корпусом ТЭНа. Сопротивление наполнителя-изолятора таково, что на любом пределе измерений мультиметр должен показать обрыв. Если окажется, что сопротивление равно нулю, то спираль имеет контакт с металлическим корпусом нагревателя. Такое может случиться даже с новым, только купленным ТЭНом.
Вообще для проверки изоляции применяется специальный прибор мегаомметр, но не всегда и не у всех он есть под рукой. Так что вполне подойдет и проверка обычным мультиметром. Хотя бы такую проверку надо сделать обязательно.
Как уже было сказано, трубчатые электрические нагревательные элементы можно изгибать даже после наполнения изолятором. Существуют нагреватели самой разнообразной формы: в виде прямой трубки, U-образные, свернутые в кольцо, змейку или спираль. Все зависит от устройства нагревательного прибора, в который предполагается установить ТЭН. Например, в проточном водонагревателе стиральной машины применяются ТЭНы свитые в спираль.
Некоторые трубчатые электрические нагревательные элементы имеют элементы защиты. Самая простая защита это термопредохранитель. Уж если он сгорел, то приходится менять весь ТЭН, но до пожара дело не дойдет. Есть и более сложная система защиты, позволяющая использовать ТЭН после ее срабатывания.
Одной из таких защит является защита на основе биметаллической пластины: тепло от перегретого ТЭНа изгибает биметаллическую пластину, которая размыкает контакт и обесточивает нагревательный элемент. После того, как температура снизится до допустимого значения, биметаллическая пластина разгибается, контакт замыкается и ТЭН снова готов к работе.
Трубчатые электрические нагревательные элементы с терморегулятором
При отсутствии горячего водоснабжения приходится пользоваться бойлерами. Конструкция бойлеров достаточно проста. Это металлическая емкость, спрятанная в «шубу» из теплоизолятора, поверх которого находится декоративный металлический корпус. В корпус же врезан термометр, показывающий температуру воды. Конструкция бойлера показана на рисунке.
Бойлер накопительного типа
Некоторые бойлеры содержат магниевый анод. Его назначение защита от коррозии нагревателя и внутреннего бака бойлера. Магниевый анод является расходным материалом, его приходится периодически менять при обслуживании бойлера. Но в некоторых бойлерах, видимо, дешевой ценовой категории, такая защита не предусмотрена.
В качестве нагревательного элемента в бойлерах применяется ТЭН с терморегулятором, конструкция одного из них показана ниже.
ТЭН с терморегулятором
В пластмассовой коробке расположен микровыключатель, который срабатывает от жидкостного термодатчика (прямая трубка рядом с ТЭНом). Форма собственно ТЭНа может быть самой разнообразной, на рисунке показана самая простая. Все зависит от мощности и конструкции бойлера. Степень нагрева регулируется за счет положения механического контакта, управляемого белой круглой рукояткой, расположенной внизу коробки. Здесь же находятся клеммы для подвода электрического тока. Крепление нагревателя производится при помощи резьбы.
Мокрые и сухие ТЭНы
Подобный нагреватель находится в непосредственном контакте с водой, поэтому такой ТЭН называют «мокрым». Срок службы «мокрого» ТЭНа находится в пределах 2…5 лет, после чего его приходится менять. В общем-то, срок службы невелик.
Для увеличения срока службы нагревательного элемента и всего бойлера в целом французской компанией Atlantic в 90-х годах прошлого века была разработана конструкция «сухого» ТЭНа. Если сказать проще, то нагреватель был спрятан в металлическую защитную колбу, исключающую прямой контакт с водой: нагревательный элемент греется внутри колбы, которая передает тепло воде.
Естественно, что температура колбы намного ниже, чем собственно ТЭНа, поэтому образование накипи при той же жесткости воды происходит не столь интенсивно, в воду передается большее количество тепла. Срок службы таких нагревателей достигает 10…15 лет. Сказанное справедливо для хороших условий эксплуатации, прежде всего стабильности напряжения питания. Но даже и в хороших условиях «сухие» ТЭНы тоже вырабатывают свой ресурс, и их приходится менять.
Вот здесь обнаруживается еще одно достоинство технологии «сухого» ТЭНа: при замене нагревателя нет никакой необходимости сливать воду из бойлера, для чего следует отключать его от трубопровода. Достаточно просто вывернуть нагреватель и заменить его на новый.
Компания Atlantic, конечно же, запатентовала свое изобретение, после чего стала продавать лицензию другим фирмам. В настоящее время бойлеры с «сухим» нагревательным элементом выпускают и другие фирмы, например, Electrolux и Gorenje. Конструкция бойлера с «сухим» ТЭНом показана на рисунке.
Бойлер с «сухим» нагревателем
Кстати, на рисунке показан бойлер с керамическим стеатитовым нагревателем. Устройство такого нагревателя смотрите ниже.
Керамический нагреватель
На керамическом основании закреплена обычная открытая спираль из проволоки с высоким сопротивлением. Температура нагрева спирали достигает 800 градусов и передается в окружающую среду (воздух под защитной оболочкой) конвекцией и теплоизлучением. Естественно, что такой нагреватель применительно к бойлерам может работать только в защитной оболочке, в воздушной среде, прямой контакт с водой попросту исключен.
Условием нормальной работы такого нагревателя является отсутствие механических нагрузок, изгибов и вибраций. На поверхности не должно быть загрязнений в виде ржавчины и масляных пятен. И, конечно же, чем более стабильным будет напряжение питания, без выбросов и скачков, тем более долговечна работа нагревателя.
Но электротехника не стоит на месте. Технологии развиваются, усовершенствуются, поэтому кроме ТЭНов в настоящее время разработаны и успешно применяются самые разнообразные электрические нагревательные элементы. Это керамические нагревательные элементы, карбоновые нагревательные элементы, инфракрасные нагревательные элементы, но это будет темой для другой статьи.
Нагревательные элементы сопротивления
4308
Нагревательные элементы сопротивления (нагреватели) могут металлическими и керамическими. Металлические нагревательные элементы сопротивления применяют в основном в термических печах; они представляют собой проводники, выполненные из специального сплава, имеющего большое электрическое сопротивление и высокий срок службы при температурах, соответствующих термической обработке. Если на концах проводника создать разность потенциалов, по проводнику потечет электрический ток, сила которого будет зависеть как от напряжения на концах проводника, так и от электрического сопротивления самого проводника, т. е.
где I — ток в проводнике, А; V — напряжение на концах проводника, В; R — электрическое сопротивление проводника, Ом.
При протекании по проводнику электрического тока происходит преобразование электрической энергии в тепловую. Количество электрической энергии, преобразованной в тепловую за 1 с, можно выразить формулой Р = V*I, где_ Р — количество энергии за 1 с или мощность, Вт.
Регулируя напряжение и сопротивление проводника, можно добиться выделения необходимого количества тепловой энергии. Напряжение регулируют трансформатором. На термических печах напряжение может изменяться от 5 до 380 В. Для этой цели используют печные трансформаторы, рассчитанные на передачу большого количества электрической энергии. Сопротивление проводника (нагревателя) изменяют, увеличивая или уменьшая его длину и поперечное сечение.
Электрическое сопротивление проводника может быть подсчитано по формуле
Долговечность нагревателя зависит от температуры, до которой он нагревается. Чем лучше условия отвода теплоты от нагревателя,
Рис. 9. Нагревательные элементы
Для обеспечения быстрого разогрева печи расход электрической энергии принимается в 1,5 раза больше, чем требуется при нормаль- ной работе печи.
На рис. 9, а показан нагреватель (справа) в виде спирали и даны примеры его расположения в печи. Срок службы нагревателя зависит от размещения его в печи. Целесообразно нагреватели 2 размещать на боковых стенах на полочках / или 5. Раскрытый нагреватель отдает теплоту в рабочее пространство печи излучением. Нагреватель 3 свода помещен в специальный фасонный кирпич 4, имеющий канал с прорезью. Условия отвода теплоты от нагревателя в этом случае хуже. Нагреватель свода со всех сторон окружен огнеупорным материалом, и только узкая прорезь соединяет канал с рабочим пространством печи. В таких условиях срок службы нагревателя свода может быть увеличен лишь при уменьшении поверхностной плотности теплового потока на 25—35 %. Подовый нагреватель 9 также работает в тяжелых условиях. От рабочего пространства его экранирует подовая плита 8. Подовый нагреватель должен быть защищен от попадания на него окалины и прочих предметов. К нагревателям, находящимся в печи, электрическая энергия подается по специальным проводникам-выводам 6, изготовленным из жаропрочной стали. Они имеют поперечное сечение намного больше сечения проводника-нагревателя, чтобы избежать нагрева их протекающим в цепи током. Изделие 7 располагают на поде печи.
Площадь раскрытия у зигзагообразных нагревателей больше, они хорошо отдают теплоту в печное пространство, что увеличивает срок их службы. Срок службы нагревателя зависит также от диаметра проволоки, из которой сделана спираль или зигзаг.
Нагреватели из нихромовой ленты изготовляют обычно в виде зигзага. Схема размещения нагревателей в печи такая же, как и зигзагообразных проволочных нагревателей.
Литые нагреватели изготовляют специальным методом литья в оболочковые формы. Такие нагреватели применяют в печах тогда, когда трудно подобрать нагреватели из проката из-за недопустимо высокой поверхностной плотности теплового потока и, следовательно, более высокой температуры нагревателя. Питые нагреватели успешно применяют при температуре печного пространства 950— 1150 °С. Нагреватели в месте изгиба имеют приливы, при помощи которых их крепят в печах на специальных петлях и крючках.
Для обогрева сушил некоторое распространение получили трубчатые нагреватели..Трубчатый электронагреватель (ТЭН) состоит из трубки из жаропрочной или обычной углеродистой стали, внутри которой помещена спираль, навитая из нихромовой проволоки. Спираль расположена по оси трубки, а пространство между спиралью и стенкой трубки заполнено порошком из окиси магния, обладающим хорошими электроизоляционными свойствами и высокой теплопроводностью. Длина трубки может быть до 1 м. По концам трубки устанавливают изоляторы с расположенными в них выводами, к которым присоединена спираль. Трубки в сборе можно легко изгибать и придавать им любую форму. Эти нагреватели применяют при рабочей температуре до 600 °С для нагрева воздуха, воды, масла и т.д.
В основу расчета электрических нагревателей положены условия теплопередачи их с окружающим «пространством. Срок службы нагревателя зависит от температуры для каждой марки стали или сплава, из которого сделан нагреватель, существует оптимальная температура. Перегрев нагревателя приводит к его пережогу.
Температура нагревателя зависит от поверхностной плотности теплового потока от нагревателя к окружающей среде. Чем ниже температура в рабочем пространстве печи, тем «больше может быть поверхностная плотность теплового потока от нагревателя. Для нагревателей из нихрома рекомендуется поверхностная плотность теплового потока 1,5-10 4 Вт/м 2 при температуре лечи 900 «С; 1-10 4 — при 1000 °С; 0,7-10 4 —при 1100 °С.
Размеры нагревателя определяют, установив тепловым расчетом печи его необходимую мощность и задавшись допустимой поверхностной плотностью теплового потока от нагревателя.
Размеры нагревателей из круглого проката
Для ленточных нагревателей при отношении сторон ленты bla = т
На условия теплопередачи нагревателя влияют состав атмосферы печи и взаимное расположение нагревателей.