Что такое эндотелиальные клетки
Что такое эндотелий – или почему мы стареем?
Эндотелий – однослойный пласт плоских клеток, выстилающих внутреннюю поверхность кровеносных и лимфатических сосудов, а также полостей сердца.
До недавнего времени считалось, что главная функция эндотелия – это полировка сосудов изнутри. И только в конце ХХ века, после присуждения в 1998 г. Нобелевской премии в области медицины, стало ясно, что основной причиной артериальной гипертензии (по народному – гипертонии) и других сердечно-сосудистых заболеваний является патология эндотелия.
Именно сейчас мы начинаем понимать, насколько важна роль этого органа. Да, именно органа, т.к. суммарный вес эндотелиальных клеток составляет 1,5-2 кг (как у печени!), а площадь его поверхности равна площади футбольного поля. Так каковы же функции эндотелия, этого огромного органа, распределенного по всей территории человеческого организма?
Выделяют 4 главные функции эндотелия:
Эти функции эндотелий осуществляет, вырабатывая и выделяя большое количество разных биологически активных веществ. Но главной молекулой, вырабатываемой эндотелием, является NO – оксид азота. Именно открытие ключевой роли NO в регуляции сосудистого тонуса (другими словами – артериального давления) и вообще состояния сосудов, было удостоено Нобелевской премии в 1998 г. Исправно функционирующий эндотелий непрерывно вырабатывает NO, поддерживая нормальное давление в сосудах. Если количество NO снижается в результате уменьшения выработки клетками эндотелия или разложения его активными радикалами, сосуды не могут адекватно расширяться и доставлять больше питательных веществ и кислорода в активно работающие органы.
NO химически нестабилен – он существует всего несколько секунд. Поэтому NO действует только там, где выделяется. И если где-то функции эндотелия нарушены, то другие, здоровые, клетки эндотелия не могут компенсировать локальную эндотелиальную дисфункцию. Развивается локальная недостаточность кровоснабжения – ишемическая болезнь. Специфические клетки органов гибнут и замещаются соединительной тканью. Развивается старение органов, что рано или поздно проявляется болями в сердце, запорами, нарушением функции печени, поджелудочной железы, сетчатки глаза и т.п. Эти процессы протекают медленно, и, зачастую, незаметно для самого человека, однако резко ускоряются при любой болезни. Чем тяжелее протекает болезнь, тем массивнее повреждение тканей, тем, следовательно, больше придется восстанавливать.
Главной задачей медицины всегда было спасение жизни человеческой. Собственно, ради этого благородного дела мы поступали в мединститут и этому нас учили, и мы учили. Однако не менее важно обеспечить процесс восстановления после болезни, предоставить организму все необходимое. Если Вы думаете, что антибиотики или противовирусные препараты (я имею в виду те, которые действительно действуют на вирус) вылечивают человека от инфекции, то Вы ошибаетесь. Эти препараты останавливают прогрессивное размножение бактерий и вирусов. А излечение, т.е. уничтожение нежизнеспособного и восстановление того, что было, осуществляется клетками иммунной системы, клетками эндотелия и стволовыми клетками!
Чем лучше процесс будет обеспечен всем необходимым, тем полнее произойдет восстановление – в первую очередь кровоснабжения пораженной части органа. Именно для этого и создан препарат ЛонгаДНК. В его составе L-аргинин – источник NO, витамины, обеспечивающие обмен веществ внутри делящейся клетки, ДНК, необходимая для полноценного процесса деления клеток.
Что такое L-аргинин и ДНК и как они действуют:
L-аргинин – аминокислота, основной источник для образования оксида азота в клетках эндотелия сосудов, нервных клетках и макрофагах. NO играет главную роль в процессе расслабления гладкой мышцы сосудов, что приводит к снижению артериального давления, препятствует образованию тромбов. Огромное значение NO имеет для нормального функционирования нервной и иммунной систем.
На сегодняшний день экспериментально и клинически доказаны следующие эффекты L-аргинина:
ДНК – дезоксирибонуклеиновая кислота – источник нуклеотидов для синтеза собственной ДНК в активно размножающихся клетках (эпителий желудочно-кишечного тракта, клетки крови, клетки эндотелия сосудов):
Есть еще несколько проявлений дисфункции эндотелия, которые никого не могут оставить равнодушным. Прежде всего – это гипертоническая болезнь и болезни вен. И еще – эректильная дисфункция. Раньше говорили – импотенция. Сейчас этот термин не употребляют, потому что процесс, в общем-то, обратим. Эректильная дисфункция – это звоночек с того света – все, дорогой товарищ, процесс пошел! Верною дорогой идете, прямо к инсульту или инфаркту миокарда! Об этом – следующие статьи.
С уважением, Ваш доктор Шубин Александр Иванович
Что такое эндотелиальные клетки
Эндотелиоциты синтезируют субстанции, важные для контроля свертывания крови, регуляции сосудистого тонуса, артериального давления, фильтрационной функции почек, сократительной активности сердца, метаболического обеспечения мозга. Эндотелий способен реагировать на механическое воздействие протекающей крови, величину давления крови в просвете сосуда и степень напряжения мышечного слоя сосуда. Клетки эндотелия чувствительны к химическим воздействиям, которые могут приводить к повышенной агрегации и адгезии циркулирующих клеток крови, развитию тромбоза, оседанию липидных конгломератов (табл. 1).
Все эндотелиальные факторы делятся на вызывающие сокращение и расслабление мышечного слоя сосудистой стенки (констрикторы и дилятаторы). Основные констрикторы представлены ниже.
Таблица 1
Факторы, синтезируемые в эндотелии и регулирующие его функцию
Факторы, вызывающие сокращение и расслабление мышечного слоя сосудистой стенки
Большой эндотелин (бЭТ)
Ангиотензин II (АТ II)
Большой эндотелин (бЭТ)
Тромбоксан А2 (ТхА2)
Простагландин Н2 (PGН2)
Эндотелиновый фактор деполяризации (EDHF)
Ангиотензин I (АТ I)
Факторы прогоагуляционные и антикоагуляционные
Тромбоцитарный фактор роста (ТФРβ)
Ингибитор тканевого активатора плазминогена (ИТАП)
Тканевой активатор плазминогена (ТАП)
Фактор Виллебранда (VIII фактор свертывания)
Ангиотензин IV (АТ IV)
Фактор активации тромбоцитов (ФАТ)
Факторы, влияющие на рост сосудов и гладкомышечных клеток
Ангиотензин II (АТ II)
Натриуретический пептид С
Эндотелиальный фактор роста (ECGF)
Гепариноподобные ингибиторы роста
Факторы провоспалительные и противовоспалительные
Фактор некроза опухоли α (ФНО-α)
С-реактивный белок (С-РБ)
Для ЭТ выявлены подтипы рецепторов, не схожие по клеточной локализации и запускающие «сигнальные» биохимические реакции. Четко прослеживается биологическая закономерность, когда одно и то же вещество, в частности, ЭТ регулирует различные физиологические процессы (табл. 2).
Основной механизм действия всех ЭТ заключается в увеличении содержания в цитоплазме гладкомышечных клеток сосудов ионов кальция, что вызывает:
Таблица 2
Подтипы рецепторов ЭТ: локализация, физиологические эффекты
и участие вторичных посредников
Гладкая мышца сосуда
Гладкая мышца сосуда
Высвобождение NO, PGI2, EDGF
Фосфолипазы C, D, A2
Высвобождение NO и др. факторы
Поврежденный эндотелий синтезирует большое количество ЭТ, вызывающего вазоконстрикцию [7]. Большие дозы ЭТ приводят к значительным изменениям системной гемодинамики: снижению частоты сердечных сокращений и ударного объема сердца, увеличению на 50 % сосудистого сопротивления в большом круге кровообращения и на 130 % в малом [7].
Группа веществ под названием дилятаторы, представлена следующими биологически активными веществами.
Адреномедулин содержится в сосудистой стенке, обоих предсердиях и желудочках сердца, спинномозговой жидкости. Имеются указания на то, что адреномедулин может синтезироваться легкими и почками. Адреномедулин стимулирует продукцию эндотелием NO, что способствует вазодилятации, расширяет сосуды почек и увеличивает скорость клубочковой фильтрации и диурез, повышает натрийурез, снижает пролиферацию гладкомышечных клеток, препятствует развитию гипертрофии и ремоделирования миокарда и сосудов, ингибирует синтез альдостерона и ЭТ.
Группа протромбогенных факторов представлена следующими агентами.
ФАТ задействован в патогенезе аллергических реакций немедленного типа. Он стимулирует агрегацию тромбоцитов с последующей активацией фактора XII (фактора Хагемана). Активированный фактор XII, в свою очередь, активирует образование кининов, наибольшее значение из которых имеет брадикинин.
Группа антитромбогенных факторов представлена нижеперечисленными биологически активными веществами.
Основные функции сводятся к инициации активации внешнего механизма свертывания крови. Он обладает высоким сродством к циркулирующему в крови ф.VII. В присутствии ионов Са2+ ТАП образует комплекс с ф.VII, вызывая его конформационные изменения и превращая последний в сериновую протеиназу ф.VIIа. Возникающий комплекс (ф.VIIа-Т.ф.) превращает ф.Х в сериновую протеиназу ф.Ха. Комплекс ТАП-фактор VII способен активировать как фактор X, так и фактор IX, что, в конечном итоге, способствует образованию тромбина.
Все факторы, влияющие на рост сосудов и гладкомышечных клеток, делятся на стимуляторы и ингибиторы. Основные стимуляторы представлены ниже.
Ключевой активной формой кислорода является супероксид анион-радикал (Ō2), образующийся при присоединении одного электрона к молекуле кислорода в основном состоянии. Ō2 представляет опасность тем, что способен повреждать белки, содержащие железо-серные кластеры, такие как аконитаза, сукцинатдегидрогеназа и НАДН-убихинон оксидоредуктаза. При кислых значениях рН Ō2 может протонироваться с образованием более реакционноспособного пероксидного радикала. Присоединение двух электронов к молекуле кислорода или одного электрона к Ō2 приводит к образованию Н2О2, которая является окислителем умеренной силы.
Опасность любых реакционно-активных соединений в значительной степени зависит от их стабильности. Экзогенно возникшие Ō2 могут проникать в клетку и (наряду с эндогенными) участвовать в реакциях, приводящих к различным повреждениям: перекисном окислении ненасыщенных жирных кислот, окислении SH-групп белков, повреждении ДНК и др.
Главные ингибиторы роста сосудов и гладкомышечных клеток представлены следующими веществами.
Сосудистый эндотелий также вырабатывает факторы, влияющие на развитие и течение воспаления.
Они делятся на провоспалительные и противовоспалительные. Ниже представлены провоспалительные факторы.
Цитотоксическое действие ФНО-α на опухолевую клетку связано с деградацией ДНК и нарушением функционирования митохондрий.
Таким образом, сосудистый эндотелий, находясь на границе между кровью и другими тканями организма, полностью выполняет свои основные функции за счет биологически активных веществ: регуляция параметров гемодинамики, тромборезистентность и участие в процессах гемостаза, участие в воспалении и ангиогенезе.
При нарушении функции или структуры эндотелия резко меняется спектр выделяемых им биологически активных веществ. Эндотелий начинает секретировать агреганты, коагулянты, вазоконстрикторы, причем часть из них (ренин-ангиотензиновая система) [10] оказывает влияние на всю сердечно-сосудистую систему. При неблагоприятных условиях (гипоксия, нарушения обмена веществ, атеросклероз и т. п.) эндотелий становится инициатором (или модулятором) многих патологических процессов в организме [6, 7, 8, 9].
Рецензенты:
Бердичевская Е.М., д.м.н., профессор, зав. кафедрой физиологии ФГОУ ВПО «Кубанский государственный университет физической культуры, спорта и туризма» г. Краснодар;
Быков И.М., д.м.н., профессор, зав. кафедрой фундаментальной и клинической биохимии ГБОУ ВПО КубГМУ Минздравсоцразвития России, г. Краснодар.
Эндотелий микрососудов и возможности медикаментозной коррекции нарушений его функции
В статье представлены возможности медикаментозной коррекции дисфункции эндотелия, обладающего прямым эндотелиопротекторным действием на уровне микроциркуляторного русла. Проведенные эксперименты позволяют расширить наши представления о механизмах метаболи
The article covers the possibilities of drug-induced correction of dysfunction of endothelium that have direct endothelium protective effect on microcirculation race level. The experiments broaden the knowledge of mechanisms of metabolic effect of this preparation.
Эндотелиальные клетки являются единственным видом клеток организма, которые контактируют непосредственно с кровью. Суммарная масса эндотелиоцитов взрослого человека среднего веса достигает 1,5–1,8 кг, что сопоставимо с массой печени [1]. Площадь всех эндотелиальных клеток равна площади футбольного поля. Однако сосудистый эндотелий — это не просто полупроницаемый барьер между кровью и тканями, а самый большой и активный эндокринный орган, диффузно рассеянный по всем тканям. Сбалансированное выделение эндотелием различных регуляторных веществ (дилататорных и констрикторных, агрегантных и дезагрегантных, тромботических и антикоагулянтных, ангиогенных и др.) и определяет целостную работу системы кровообращения.
При воздействии различных повреждающих факторов (химической или биологической природы, механических, обменных или иммунокомплексных) нарушается функция эндотелия, что проявляется в уменьшении высвобождения эндотелием вазодилатирующих факторов (оксида азота (NO), простациклина, гиперполяризующего эндотелиального фактора) и усилении их деградации на фоне увеличения синтеза констрикторных факторов (эндотелинов, тромбоксана А2 и др.). Таким образом, дисфункция эндотелия — это неадекватное (увеличенное или сниженное) образование в эндотелии различных биологически активных веществ.
«Стратегическое» положение эндотелиальных клеток обуславливает тот факт, что они первыми вовлекаются в различные патологические процессы. Дисфункция эндотелия отмечается при самых различных патологических состояниях — при заболеваниях органов сердечно-сосудистой системы [2–4], органов дыхательной системы [5–7], заболеваниях почек [8], обменных и гормональных нарушениях [9–11], венозной патологии нижних конечностей [12, 13], заболеваниях органов желудочно-кишечного тракта [14], ревматологических [15] и онкологических заболеваниях [16], в акушерской [17] и стоматологической практике [18], при полиорганной недостаточности [19] и многих других заболеваниях.
Однако нельзя не учитывать и такого фактора, что из 100 млрд сосудов человеческого организма более 98% относятся к сосудам микроциркуляторного русла (МЦР), на уровне которых происходят все обменные процессы, обеспечивающие поддержание тканевого гомеостаза. Капилляры и посткапиллярные венулы вообще состоят из одного слоя эндотелиальных клеток, что и является структурной основой для обменных процессов. В последние два десятилетия, благодаря применению амплитудно-частотного вейвлет-анализа (англ. wavelet — всплеск) колебаний кровотока при лазерной допплеровской флоуметрии (ЛДФ), появилась техническая возможность оценивать функциональное состояние эндотелия на уровне сосудов МЦР. Среди механизмов модуляции кровотока в микрососудах выделяют эндотелиальный, нейрогенный, миогенный, респираторный и кардиальный, которые в полосе частот от 0,0095 до 3 Гц формируют 5 не перекрывающихся частотных диапазонов [20]. Самый низкочастотный диапазон (0,0095–0,021 Гц) связывают с функциональной активностью микрососудистого эндотелия. Впервые на наличие устойчивых колебаний кровотока с частотой ≈0,01 Гц обратила внимание A. Stefanovska [21]. В 1998 г. D. G. Buerk и C. E. Riva связали данный частотный диапазон с периодически изменяющейся концентрацией оксида азота [22], что в дальнейшем нашло свое подтверждение в целом ряде работ с ионофорезом ацетилхолина [23–27].
Однако эндотелий на уровне микрососудистого русла выполняет не только вазомоторную, но и метаболическую функцию. Было сделано предположение, что функциональная активность эндотелия в частотном диапазоне около 0,01 Гц должна проявляться и при активации обменных процессов. Для проверки данной гипотезы был выбран препарат, обладающий доказанной и выраженной метаболической активностью, — Актовегин [28–31].
Материалы и методы
В исследовании были включены 28 здоровых некурящих мужчин 18–29 лет (21,6 ± 2,6 года), которые за сутки до исследования не принимали алкоголь- и кофеинсодержащих напитков. Все испытуемые были проинформированы о целях и методах исследования и дали свое письменное согласие.
Оценка микроциркуляторных процессов в коже проводилась с использованием неинвазивных методов исследования — компьютерной капилляроскопии (КС) и лазерной допплеровской флоуметрии (ЛДФ). Исследование исходных параметров микроциркуляции выполняли в 9.00–10.30, после чего проводили инфузию 250,0 мл 10% раствора Актовегина со скоростью 2,5 мл/мин в левую кубитальную вену (10.30–12.30). Через 2 часа после окончания инфузии проводили повторное исследование микроциркуляции (14.30–16.00).
Параметры капиллярного кровотока оценивали в области ногтевого ложа 4-го пальца правой кисти компьютерным капилляроскопом «Капилляроскан-1» (ЗАО «Новые энергетические технологии», Россия). КС выполняли в положении сидя после 15-минутного периода адаптации при постоянной температуре в помещении 23 ± 1 °C. За 5 минут до начала исследования производили измерение температуры кожных покровов инфракрасным термометром «Beurer» (Германия) в области ногтевого ложа. Руку испытуемого располагали в специальном мягком фиксирующем устройстве на уровне сердца. Оценку размера перикапиллярной зоны (ПЗ) — линейный размер от наиболее близкой точки переходного отдела капилляра до максимально удаленной точки кожного сосочка (рис. 1) производили у всех испытуемых по 5–6 капиллярам (≈5,8 капилляра на испытуемого) при увеличении ×380 (поле зрения 500 × 400 мкм). Запись видеофрагментов капиллярного кровотока проводили на протяжении 10 секунд для каждого капилляра со скоростью 100 кадров в секунду. Благодаря применению программы анализа пространственно-временных диаграмм, расчет скорости капиллярного кровотока (СКК) производили в 3–4 капиллярах (≈3,6 капилляра на испытуемого) на протяжении 3–5 секунд в автоматическом режиме по средней линии в области переходного и прилегающих к нему артериального и венозного отделов капилляра. Динамику СКК и ПЗ оценивали в одних и тех же капиллярах. Для анализа полученных результатов брали усредненные значения ПЗ и СКК.
После исследования капиллярного кровотока испытуемые принимали горизонтальное положение на кушетке и также проходили пятнадцатиминутный период адаптации. За 5 минут до начала ЛДФ (10-я минута периода адаптации) производили измерение артериального давления (АД), частоты сердечных сокращений на правой руке и температуры кожи непосредственно в области исследования — 3–4 см проксимальнее лучезапястного сустава по средней линии наружной поверхности правого предплечья.
Функциональное состояние микрососудистого русла кожи исследовали при помощи одноканального лазерного анализатора кровотока «ЛАКК-02» в видимой красной области спектра (длина волны 630 нм) и блока «ЛАКК-ТЕСТ» (НПП «ЛАЗМА», Россия), которые позволяют оценивать параметры перфузии в ≈1 мм 3 кожи при постоянно поддерживаемой температуре в области исследования на уровне +32 °C.
Параметры перфузии оценивали на протяжении шести минут. Амплитудно-частотный спектр (АЧС) колебаний кровотока рассчитывали с использованием математического аппарата вейвлет-преобразования. Усредненную по времени амплитуду вазомоций оценивали по максимальным значениям (Amax) в соответствующем частотном диапазоне (Fmax) для эндотелиального (Э), нейрогенного (Н), миогенного (М), венулярного (Д) и кардиального (С) звеньев модуляции кровотока (рис. 2). Значения уровня перфузии (М) и амплитуды звеньев модуляции кровотока оценивали в условных перфузионных единицах (пф), что обусловлено принципиальными трудностями при калибровке метода ЛДФ как in vitro, так и in vivo [32]. Учитывая неравномерность кровоснабжения кожных покровов [33], область исследования на предплечье отмечали маркером и динамику функционального состояния микрососудов оценивали в одной и той же области кожного покрова.
Для исключения влияния на параметры микроциркуляторного кровотока таких факторов, как суточное колебание активности регуляторных механизмов (биоритмы), самого факта внутривенной инфузии с возможными элементами гемоделюции, было проведено контрольное исследование динамики микроциркуляторного кровотока на фоне метаболически нейтрального препарата (250,0 мл 0,9% NaCl) по аналогичному для Актовегина протоколу. В контрольную группу вошли 14 испытуемых, которые продемонстрировали наиболее выраженный прирост амплитуды эндотелиальных вазомоций на фоне Актовегина по данным ЛДФ.
Полученные данные представлены в виде средних значений со стандартным отклонением (М ± SD). Для оценки достоверности динамики параметров микроциркуляторного кровотока использовали тест Wilcoxon. Различия считали достоверными при p 3 кожи попадает один микроциркуляторный модуль, сосудистая организация которого построена по классическому типу. I. M. Braverman показал, что 1 мм 3 кожи содержит одну артериолу диаметром не более 30 мкм, которая делится на 5 метартериол, дающих в общей сложности от 60 до 100 капилляров, которые переходят в посткапиллярные венулы, которые сливаются в девять собирательных венул с последующим переходом в одну дренирующую венулу диаметром порядка 40–50 мкм [36]. Из всех сосудов микроциркуляторного модуля кожи только артериолы и метартериолы содержат гладкомышечные клетки. Посткапиллярные венулы, как и капилляры, состоят из одного слоя эндотелиальных клеток, что также указывает на их участие в обменных процессах. В собирательных венулах начинают появляться перициты, образующие полноценные слои сосудистой стенки по мере увеличения диаметра сосудов, но функциональная роль данных клеток по-прежнему до конца не ясна. Таким образом, в область зондирования при ЛДФ попадает один микроциркуляторный сосудистый модуль, где происходят все обменные процессы.
Известно, что адекватность обменных процессов зависит от перекрывающегося действия четырех групп факторов: 1) градиента (кровь↔ткань) концентрации веществ; 2) размера и строения молекулы транспортируемых веществ; 3) состояния эндотелия микрососудов; 4) параметров гемодинамики. Сочетание двух неинвазивных методов исследования (КС и ЛДФ) позволяет нам оценивать гемодинамические параметры кровотока на уровне единичного модуля МЦР.
Основной мишенью любых регуляторных воздействий являются гладкомышечные клетки сосудов, которые имеют собственный базальный тонус и обладают пейсмейкерной активностью, сокращаясь и расслабляясь с частотой от 4 до 9 раз в минуту. Собственная активность гладкомышечных клеток при ЛДФ проявляется в диапазоне 0,07–0,15 Гц (диапазон М). Со стороны наружного слоя сосудов базальный тонус и сократительная активность миоцитов модулируется симпатической нервной системой (диапазон Н) посредством синаптической связи с частотой 2–3 раза в минуту, что соответствует частотному диапазону 0,03–0,05 Гц. Со стороны внутреннего просвета сосудов, благодаря наличию миоэндотелиальных контактов, активность гладкомышечных клеток модулируется эндотелиальными факторами (Э) реже 1 раза в минуту, что соответствует частотному диапазону около 0,01 Гц. Суммарное действие всех трех регуляторных механизмов и обуславливает конечный тонус прекапиллярных артериол, поэтому их еще называют тонусформирующими или «активными» механизмами модуляции кровотока. Модулированная нейрогенными и эндотелиальными факторами активность гладкомышечных клеток проявляется в виде вазомоций (периодическое изменение диаметра прекапиллярных артериол), которые в последние годы вызывают большой интерес со стороны исследователей [37–39]. Физиологическая роль вазомоций заключается в модулировании объема и скорости притекающей в МЦР артериальной крови до оптимальных для транскапиллярного обмена значений.
Интерпретация результатов амплитудно-частотного вейвлет-анализа колебаний кровотока не вызывает никаких трудностей, если представить нулевое значение за продольную ось, а максимальные значения амплитуды за стенку микрососуда (рис. 2). Чем больше амплитуда регуляторного механизма (эндотелиального, нейрогенного, миогенного), тем больше просвет сосуда. Если перевести амплитудную активность на язык тонуса, то можно говорить о том, что чем больше амплитуда, тем ниже тонус, и наоборот. Полученные в ходе исследования результаты показывают, что через два часа после окончания инфузии Актовегина отмечается достоверное увеличение амплитуды всех трех тонусформирующих механизмов модуляции микрокровотока (табл. 2) или, если говорить другими словами, снижение эндотелиального, нейрогенного и миогенного компонентов тонуса прекапиллярных артериол. Несмотря на то что достоверных корреляционных взаимосвязей между уровнем АД и величиной амплитуды тонусформирующих механизмов модуляции кровотока не получено, можно с полной уверенностью говорить о том, что незначительное, но достоверное снижение ДАД и срАД является следствием снижения тонуса резистивных микрососудов — прекапиллярных артериол. Увеличение просвета прекапиллярных артериол (снижение тонуса) имеет и другое, более важное следствие, которое проявляется в достоверном увеличении скорости капиллярного кровотока, что является важным фактором для транскапиллярного обмена.
Необходимо отдельно остановиться на эндотелиальном компоненте модуляции микрокровотока. Взаимосвязь колебаний кровотока на частоте около 0,01 Гц с продукцией эндотелием оксида азота сегодня у исследователей уже не вызывает никаких сомнений [23–27]. Высокодостоверное увеличение амплитуды эндотелиальных вазомоций, полученное в ходе эксперимента, позволяет говорить о том, что Актовегин способствует выработке эндотелием NO, что благоприятно сказывается не только на гемодинамических, но и метаболических процессах. Длительные (около 0,6 колеб./мин) эндотелиальные вазомоции называют еще метаболическими, поскольку они обеспечивают продолжительный приток крови в обменное звено сосудистого русла. В этом плане весьма показательны работы, основанные на методе ЛДФ с оптической спектроскопией, в которых показана взаимосвязь эндотелиальных вазомоций с обменом кислорода и выявлено, что время экстракции кислорода у испытуемых с повышенным индексом массы тела достоверно больше, чем у испытуемых без признаков ожирения [40, 41].
«Пассивные» механизмы модуляции кровотока (пульсовой (С) на «входе» в систему микроциркуляции и дыхательный (Д) на «выходе») связаны с изменением продольного градиента давления в микрососудистом русле, который, в свою очередь, обусловлен периодическим изменением АД на входе в МЦР (пульсовое АД) и вариацией давления в венулах в ходе дыхательных циклов. Увеличение амплитуды пульсовых колебаний (Ас) свидетельствует о повышении притока артериальной крови в МЦР и косвенно отражает величину просвета более крупных (глубже расположенных по отношению к поверхности кожи) артериол. Амплитуда респираторно обусловленных колебаний кровотока (Ав) отражает вклад в общую мощность сигнала составляющей, отраженной от эритроцитов венулярного отдела, и увеличение данного параметра расценивается как венулярное полнокровие [42–45]. В нашем исследовании мы не получили достоверного увеличения амплитуды пульсовых колебаний, что можно расценивать как отсутствие увеличения притока крови в МЦР. А вот достоверное увеличение амплитуды респираторно обусловленных колебаний кровотока можно объяснить повышенной реабсорбцией жидкости из тканей в сосудистое русло, что приводит к увеличению объема крови в посткапиллярном отделе МЦР. На увеличение процессов реабсорбции указывает и достоверное уменьшение размера ПЗ по данным капилляроскопии, которое наблюдалось у всех 28 испытуемых. Данный параметр не просто отражает степень гидратации интерстициального пространства, а несет более важную информацию — метаболическую. Чем больше ПЗ, тем больше дистанция кровь↔клетка для питательных веществ и продуктов тканевого метаболизма.
Еще одной находкой можно считать уменьшение элементов артериоло-венулярного шунтирования кровотока. Параметры Ас и Ав по своей сути отражают состояние путей притока крови к МЦР и путей ее оттока, и между ними всегда существует достоверная корреляционная взаимосвязь, но в норме коэффициент корреляции обычно не превышает 0,4. Столь слабая взаимосвязь обусловлена наличием в МЦР кожи артериоло-венулярных анастомозов, которые располагаются на различных глубинах кожного покрова, и кровь шунтируется по ним, минуя капиллярное русло. Данный процесс является физиологически обусловленным, так как одной из основных функций кожи является участие ее в процессах терморегуляции и процесс шунтирования кровотока направлен на поддержание температурного гомеостаза организма. В нашем исследовании исходный коэффициент корреляции между Ас и Ав составил 0,38 (p
А. А. Федорович, кандидат медицинских наук
ФГБУ РКНПК МЗ РФ, Москва