Что такое энергетическая светимость
Что такое энергетическая светимость
§ 4 Энергетическая светимость. Закон Стефана-Больцмана.
Закон смещения Вина
— связь энергетической светимости и лучеиспускательной способности
[ R Э ] =Дж/(м 2 ·с) = Вт/м 2
Закон Й. Стефана (австрийский ученый) и Л. Больцмана (немецкий ученый)
Энергетическая светимость абсолютно черного тела пропорциональна четвертой степени термодинамической температуры.
Смещение Вина происходит потому, что с ростом температуры максимум излучательной способности смещается в сторону коротких длин волн.
§ 5 Формула Рэлея-Джинса, формула Вина и ультрафиолетовая катастрофа
Закон Стефана-Больцмана позволяет определять энергетическую светимость R Э а.ч.т. по его температуре. Закон смещения Вина связывает температуру тела с длиной волны, на которую приходятся максимальная лучеиспускательная способность. Но ни тот, ни другой закон не решают основной задачи о том, как велика лучеиспускательная, способность, приходящаяся на каждую λ в спектре а.ч.т. при температуре Т. Для этого надо установить функциональную зависимость r λ ,Т от λ и Т.
Основываясь на представлении о непрерывном характере испускания электромагнитных волн в законе равномерного распределения энергий по степеням свободы, были получены две формулы для лучеиспускательной способности а.ч.т.:
Опытная проверка показала, что для данной температуры формула Вина верна для коротких волн и даёт резкие расхождения с опытом в области длинных волн. Формула Рэлея-Джинса оказалась верна для длинных волн и не применима для коротких.
Исследование теплового излучения с помощью формулы Рэлея-Джинса показало, что в рамках классической физики нельзя решить вопрос о функции, характеризующей излучательную способность а.ч.т. Эта неудачная попытка объяснения законов излучения а.ч.т. с помощью аппарата классической физики получила название “ультрафиолетовой катастрофы”.
Если попытаться вычислить R Э с помощью формулы Рэлея-Джинса, то
§6 Квантовая гипотеза и формула Планка.
где
Так как излучение происходит порциями, то энергия осциллятора (колеблющегося атома, электрона) Е принимает лишь значения кратные целому числу элементарных порций энергии, то есть только дискретные значения
Впервые влияние света на ход электрических процессов было изучено Герцем в 1887 году. Он проводил опыты с электрическим разрядником и обнаружил, что при облучении ультрафиолетовым излучением разряд происходит при значительно меньшем напряжении.
В 1889-1895 гг. А.Г. Столетов изучал воздействие света на металлы, используя следующую схему. Два электрода: катод К из исследуемого металла и анод А (в схеме Столетова – металлическая сетка, пропускающая свет) в вакуумной трубке подключены к батарее так, что с помощью сопротивления R можно изменять значение и знак подаваемого на них напряжения. При облучении цинкового катода в цепи протекал ток, регистрируемый миллиамперметром. Облучая катод светом различных длин волн, Столетов установил следующие основные закономерности:
Ленард и Томсон в 1898 году измерили удельный заряд (е/ m ), вырываемых частиц, и оказалось, что он равняется удельному заряду электрона, следовательно, из катода вырываются электроны.
Внешним фотоэффектом называется испускание электронов веществом под действием света. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а образуемый ими ток называется фототоком.
С помощью схемы Столетова была получена следующая зависимость фототока от приложенного напряжения при неизменном световом потоке Ф (то есть была получена ВАХ – вольт- амперная характеристика):
— энергия фотона,
Фе – световой поток (мощность излучения).
1-й закон внешнего фотоэффекта (закон Столетова):
При фиксированной частоте падающего света фототок насыщения пропорционален падающему световому потоку:
Ф, ν = const
следовательно, можно найти максимальную скорость вылетающих фотоэлектронов Vmax
2- й закон фотоэффекта : максимальная начальная скорость Vmax фотоэлектронов не зависит от интенсивности падающего света (от Ф), а определяется только его частотой ν
3- й закон фотоэффекта : для каждого вещества существует «красная граница» фотоэффекта, то есть минимальная частота νкp, зависящая от химической природы вещества и состояния его поверхности, при которой ещё возможен внешний фотоэффект.
Так как по волновой теории энергия, передаваемая электромагнитным полем пропорциональна интенсивности света (Ф), то свет любой; частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла, то есть красной границы фотоэффекта не существовало бы, что противоречит 3-му закону фотоэффекта. Внешний фотоэффект является безынерционным. А волновая теория не может объяснить его безынерционность.
§ 3 Уравнение Эйнштейна для внешнего фотоэффекта.
Работа выхода
Уравнение Эйнштейна (закон сохранения энергии для внешнего фотоэффекта):
Энергия падающего фотона hv расходуется на вырывание электрона из металла, то есть на работу выхода Авых, и на сообщение вылетевшему фотоэлектрону кинетической энергии .
Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого тела в вакуум называется работой выхода.
Уравнение Эйнштейна позволяет объяснить в c е три закона внешнего фотоэффекта,
1-й закон: каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности (Ф) света
ν и т.к. Авых не зависит от Ф, то и Vmax не зависит от Ф
3-й закон: При уменьшении ν уменьшается Vmax и при ν = ν0 Vmax = 0, следовательно, hν 0 = Авых, следовательно, т.е. существует минимальная частота, начиная с которой возможен внешний фотоэффект.
Что такое энергетическая светимость
§ 4 Энергетическая светимость. Закон Стефана-Больцмана.
Закон смещения Вина
— связь энергетической светимости и лучеиспускательной способности
[ R Э ] =Дж/(м 2 ·с) = Вт/м 2
Закон Й. Стефана (австрийский ученый) и Л. Больцмана (немецкий ученый)
Энергетическая светимость абсолютно черного тела пропорциональна четвертой степени термодинамической температуры.
Смещение Вина происходит потому, что с ростом температуры максимум излучательной способности смещается в сторону коротких длин волн.
§ 5 Формула Рэлея-Джинса, формула Вина и ультрафиолетовая катастрофа
Закон Стефана-Больцмана позволяет определять энергетическую светимость R Э а.ч.т. по его температуре. Закон смещения Вина связывает температуру тела с длиной волны, на которую приходятся максимальная лучеиспускательная способность. Но ни тот, ни другой закон не решают основной задачи о том, как велика лучеиспускательная, способность, приходящаяся на каждую λ в спектре а.ч.т. при температуре Т. Для этого надо установить функциональную зависимость r λ ,Т от λ и Т.
Основываясь на представлении о непрерывном характере испускания электромагнитных волн в законе равномерного распределения энергий по степеням свободы, были получены две формулы для лучеиспускательной способности а.ч.т.:
Опытная проверка показала, что для данной температуры формула Вина верна для коротких волн и даёт резкие расхождения с опытом в области длинных волн. Формула Рэлея-Джинса оказалась верна для длинных волн и не применима для коротких.
Исследование теплового излучения с помощью формулы Рэлея-Джинса показало, что в рамках классической физики нельзя решить вопрос о функции, характеризующей излучательную способность а.ч.т. Эта неудачная попытка объяснения законов излучения а.ч.т. с помощью аппарата классической физики получила название “ультрафиолетовой катастрофы”.
Если попытаться вычислить R Э с помощью формулы Рэлея-Джинса, то
§6 Квантовая гипотеза и формула Планка.
где
Так как излучение происходит порциями, то энергия осциллятора (колеблющегося атома, электрона) Е принимает лишь значения кратные целому числу элементарных порций энергии, то есть только дискретные значения
Впервые влияние света на ход электрических процессов было изучено Герцем в 1887 году. Он проводил опыты с электрическим разрядником и обнаружил, что при облучении ультрафиолетовым излучением разряд происходит при значительно меньшем напряжении.
В 1889-1895 гг. А.Г. Столетов изучал воздействие света на металлы, используя следующую схему. Два электрода: катод К из исследуемого металла и анод А (в схеме Столетова – металлическая сетка, пропускающая свет) в вакуумной трубке подключены к батарее так, что с помощью сопротивления R можно изменять значение и знак подаваемого на них напряжения. При облучении цинкового катода в цепи протекал ток, регистрируемый миллиамперметром. Облучая катод светом различных длин волн, Столетов установил следующие основные закономерности:
Ленард и Томсон в 1898 году измерили удельный заряд (е/ m ), вырываемых частиц, и оказалось, что он равняется удельному заряду электрона, следовательно, из катода вырываются электроны.
Внешним фотоэффектом называется испускание электронов веществом под действием света. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а образуемый ими ток называется фототоком.
С помощью схемы Столетова была получена следующая зависимость фототока от приложенного напряжения при неизменном световом потоке Ф (то есть была получена ВАХ – вольт- амперная характеристика):
— энергия фотона,
Фе – световой поток (мощность излучения).
1-й закон внешнего фотоэффекта (закон Столетова):
При фиксированной частоте падающего света фототок насыщения пропорционален падающему световому потоку:
Ф, ν = const
следовательно, можно найти максимальную скорость вылетающих фотоэлектронов Vmax
2- й закон фотоэффекта : максимальная начальная скорость Vmax фотоэлектронов не зависит от интенсивности падающего света (от Ф), а определяется только его частотой ν
3- й закон фотоэффекта : для каждого вещества существует «красная граница» фотоэффекта, то есть минимальная частота νкp, зависящая от химической природы вещества и состояния его поверхности, при которой ещё возможен внешний фотоэффект.
Так как по волновой теории энергия, передаваемая электромагнитным полем пропорциональна интенсивности света (Ф), то свет любой; частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла, то есть красной границы фотоэффекта не существовало бы, что противоречит 3-му закону фотоэффекта. Внешний фотоэффект является безынерционным. А волновая теория не может объяснить его безынерционность.
§ 3 Уравнение Эйнштейна для внешнего фотоэффекта.
Работа выхода
Уравнение Эйнштейна (закон сохранения энергии для внешнего фотоэффекта):
Энергия падающего фотона hv расходуется на вырывание электрона из металла, то есть на работу выхода Авых, и на сообщение вылетевшему фотоэлектрону кинетической энергии .
Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого тела в вакуум называется работой выхода.
Уравнение Эйнштейна позволяет объяснить в c е три закона внешнего фотоэффекта,
1-й закон: каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности (Ф) света
ν и т.к. Авых не зависит от Ф, то и Vmax не зависит от Ф
3-й закон: При уменьшении ν уменьшается Vmax и при ν = ν0 Vmax = 0, следовательно, hν 0 = Авых, следовательно, т.е. существует минимальная частота, начиная с которой возможен внешний фотоэффект.
Энергетическая светимость тела
;
Дж/с·м²=Вт/м²
Спектральная плотность энергетической светимости
Спектральная плотность энергетической светимости — функция частоты и температуры характеризующая распределение энергии излучения по всему спектру частот (или длин волн).
Аналогичную функцию можно написать и через длину волны
Можно доказать, что спектральная плотность энергетической светимости, выраженная через частоту и длину волны, связаны соотношением:
Поглощающая способность тела
Поглощающая способность тела — — функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот
вблизи
где — поток энергии, поглощающейся телом.
— поток энергии, падающий на тело в области
вблизи
Отражающая способность тела
Отражающая способность тела — — функция частоты и температуры, показывающая какая часть энергии электромагнитного излучения, падающего на тело, отражается от него в области частот
вблизи
где — поток энергии, отражающейся от тела.
— поток энергии, падающий на тело в области
вблизи
Абсолютно черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение
— для абсолютно черного тела
Серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры
— для серого тела
Объемная плотность энергии излучения — — функция температуры, численно равная энергии электромагнитного излучения в единицу объема по всему спектру частот
Спектральная плотность энергии — — функция частоты и температуры, связанная с объемной плотностью излучения формулой:
Следует отметить, что спектральная плотность энергетической светимости для абсолютно черного тела связана со спектральной плотностью энергии следующим соотношением:
— для абсолютно черного тела
Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:
Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела: |
где — степень черноты (для всех веществ
, для абсолютно черного тела
). При помощи закона Планка для излучения, постоянную
можно определить как
где — постоянная Планка,
— постоянная Больцмана,
— скорость света.
Закон излучения Кирхгофа-Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.
Закон смещения Вина даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела.
где T — температура в кельвинах, а — длина волны с максимальной интенсивностью в метрах. Следует отметить, что коэффициент b, называемый постоянной Вина, и имеющий значение
, в данной формуле имеет при этом размерность [ мК ]
Согласно постулату Планка: энтропия правильно сформированного кристалла индивидуального вещества при абсолютной температуре Т=О К равна нулю. Правильно сформированный (идеальный) кристалл—это бездефектный кристалл, в решетке которого атомы занимают узлы в строгом соответствии с геометрическими законами.
4.3 Фотон — элементарная частица, переносчик электромагнитного взаимодействия, квант электромагнитного поля. Фотоны обозначаются буквой γ, поэтому их часто называют гамма-квантами (особенно фотоны высоких энергий); эти термины практически синонимичны.
Корпускуля́рно-волново́й дуали́зм (или Ква́нтово-волново́й дуали́зм) — принцип, согласно которому любой объект может проявлять какволновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепцияквантованных полей в квантовой теории поля.
Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойстваэлектромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны.
Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать с классической точки зрения только на основе представлений о свете, как о потоке дискретных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми и корпускулярными свойствами.
Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить корпускулярные свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решетке — кристаллической решетке твердого тела.
При квантовых переходах атомы и молекулы скачкообразно переходят из одного стационарного состояния в другое, с одного энергетического уровня на другой.
Изменение состояния атомов связано с энергетическими переходами электронов. В молекулах энергия может изменяться не только в результате электронных переходов, но и вследствие изменения колебания атомов и переходов между вращательными уровнями.
Различают два типа квантовых переходов:
1) без излучения или поглощения электромагнитной энергии атомом или молекулой. Такой безызлучательный переход происходит при взаимодействии атома или молекулы с другими частица-
Энергия фотона равна разности энергий начального и конечного стационарных состояний атома или молекулы:
Формула выражает закон сохранения энергии.
4.5 Атомноеядросостоитизнуклонов — положительнозаряженныхпротоновинейтральныхнейтронов, которыесвязанымеждусобойприпомощи сильноговзаимодействия. Протонинейтронобладаютсобственныммоментомколичествадвижения (спином), равным [сн 1] исвязаннымсниммагнитныммоментом.
Атомноеядро, рассматриваемоекакклассчастицсопределённымчисломпротоновинейтронов, принятоназыватьнуклидом.
Радиоактивность — этосамопроизвольноеизменениесоставаатомногоядра, котороепроисходитнеменеечемчерез 10-12 спослеегорождения. Количественноеограничениеобусловленокакразэкспериментамисбомбардировкойатомныхядер. Еслистабильноеядроразваливаетсясразупослепопаданиявнегоснарядаатомнойартиллерии, неуспевпросуществоватьвизмененномвидедажетакойничтожнократкийпромежутоквремени, значит, явлениетакогораспаданеотноситсякрадиоактивности.
Первопричинойрадиоактивностиявляетсяпротивоборствовнутриядрадвухсил — электрическогоотталкиванияиядерногостягивания. Протоныядра, каквсякиеодноименнозаряженныечастицы, взаимноотталкиваются, стремятсяразлететься. Ядерныесилысближаютнуклоны, препятствуютразлетупротонов. Судьбаядразависит, такимобразом, отсоотношенияэтихсил, аболееконкретно — отсоотношениячислапротоновинейтроноввядре; Протоны — носителикак
«склеивающих» ядерныхсил, такирасталкивающихэлектрических. Лишенныезаряданейтронывносятвкладлишьвстягиваниеядра.
Числопротоноввядреопределяетатомныйномерэлемента, числоэлектроновватомеи, сталобыть, егохимическиесвойства. Содержаниенейтроноввтакомядреможетколебаться, носвойствавещества, заисключениематомноймассы, приэтомсущественнонеразличаются. Поэтомуядрасодинаковымчисломпротонов, норазнымколичествомнейтроновпредставляютсобойвариантыатомоводногоэлемента, располагаютсяводнойклеткетаблицыМенделееваиносятназваниеизотопы, тоестьрасположенныеводномместе. Большинствоэлементовипредставляетсобойсмесьнесколькихстабильныхизотопов.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.