Что такое энергетический переход
Энергетический переход: Россия в глобальной повестке
Алексей КУЛАПИН
Генеральный директор ФГБУ «Российское энергетическое агентство» Минэнерго России, д. х. н.
Тренд на энергетический переход
Само по себе понятие «энергетический переход» не ново, и означает структурное преобразование глобального энергетического баланса с сокращением доли определенного вида топлива на 10 % за 10 лет.
За всю свою историю человечество уже пережило три этапа трансформации ТЭК: первым стал переход от биомассы к углю, вторым – от угля к нефти и, наконец, от нефти к газу. Сейчас мы стоим на пороге четвертой энергетической революции, ключевой особенностью которой является наращивание использования низко- и безуглеродных источников энергии, в частности ВИЭ.
Среди основных драйверов, способствующих очередным изменениям: стремление развитых стран к декарбонизации мировой экономики и их желание снизить свою зависимость от поставок энергоресурсов из-за рубежа.
Только в прошлом году, по оценке Bloomberg New Energy Finance (BNEF), общий уровень инвестиций в энергетический переход составил рекордные 501,3 млрд долларов. Примечательно, что среди всех стран мира наибольший прирост приходится именно на Европейский союз: +67 % к 2019 году. Одновременно с этим в Китае и в США наблюдается сокращение финансирования энергетического перехода на 12 и 11 % к 2019 году соответственно.
Наибольший уровень инвестиций пришелся на сектор возобновляемой энергетики – 303,5 млрд долларов. Для ВИЭ – это второй по величине показатель финансирования за всю историю после максимальных 313,3 млрд долларов США в 2017 году.
Рост мировых мощностей ветровой и солнечной энергетики на более чем 200 ГВт в год уже стал новой нормой. Согласно докладу Net Zero by 2050, выпущенному Международным энергетическим агентством (МЭА) в 2021 году, к 2030 году для достижения целей углеродной нейтральности суммарный ввод ВЭС и СЭС должен составить около 1000 ГВт, что эквивалентно ежедневной установке крупнейшего в мире солнечного парка. К 2050 году на крышах домов должно быть установлено около 240 млн солнечных панелей. Для сравнения, в 2020 году количество таких объектов микрогенерации в домохозяйствах насчитывало порядка 25 миллионов.
Энергетический переход для всех?
Ведущие мировые эксперты сходятся в одном: для достижения к 2050 году заявленных целей по декарбонизации мировой экономики объем инвестиций в «зеленую» энергетику к 2030 году должен, как минимум, утроиться и составить около 4 трлн долларов. Даже для развитых экономик заявленные объемы вложений сегодня кажутся маловероятными.
Вместе с тем в ряде развивающихся стран Африки и Азии до сих пор не решен вопрос борьбы с энергетической бедностью. По подсчетам ООН, в 2019 году порядка 759 млн человек по всему миру не имело доступа к электроэнергии. Положение усугубляет пандемия новой коронавирусной инфекции COVID‑19, последствия которой в будущем могут препятствовать прогрессу в электрификации. Ожидается, что к 2030 году без электричества в мире может остаться еще 660 млн человек. Смогут ли себе позволить в перспективе ближайших нескольких десятилетий такие государства строительство и эксплуатацию объектов генерации на основе ВИЭ в необходимых для покрытия энергетических потребностей и обеспечения роста экономики количествах – большой вопрос.
Дело – в технологиях
Основным аргументом сторонников скорейшего энергетического перехода и полного отказа от ископаемых источников энергии остается доступность энергии ветра и солнца практически в любой точке земного шара.
Наряду с этим в текущих условиях технологического развития ключевым барьером расширения использования возобновляемой энергетики является нестабильность выработки, связанная с изменчивостью погодных условий. Решить сложившуюся ситуацию призваны накопители энергии, которые позволят компенсировать ее нехватку в пиковые часы потребления, во время штиля или при отсутствии солнца.
Несмотря на то, что разработка пилотных образцов таких накопителей ведется достаточно давно, в промышленное применение они так и не поступили.
Ветряная турбина в Сент-Пазане, Франция
Источник: altitudedrone / Depositphotos.com
До появления систем хранения энергии покрывать недостающую генерацию все еще приходится за счет традиционных электростанций, что может негативным образом сказываться на стоимости электроэнергии для потребителей.
Еще одним вызовом для возобновляемой энергетики является отсутствие эффективных технологий утилизации отработавших свой срок солнечных станций и ветрогенераторов. В настоящее время, когда развитие возобновляемой энергетики только набирает обороты, а количество компонентов, требующих замены, достаточно мало, в большинстве случаев вопрос решается ремонтом вышедшего из строя оборудования и его дальнейшей перепродажи в развивающиеся страны. Но уже через пару десятков лет вопрос встанет ребром. По данным BNEF, только в Европе к 2038 году объем отработанных лопастей ветроэлектрических станций составит 300 тыс. тонн, а количество требующих переработки фотоэлектрических модулей к 2050 году во всем мире достигнет 78 млн тонн.
Необходимость дальнейшего развития технологий возобновляемой энергетики признается и в докладе Net Zero by 2050. При этом МЭА отмечает, что наибольшее сокращение эмиссии парниковых газов к 2050 году связано с развитием технологий, которые сегодня находятся на уровне прототипов, а для их выхода на коммерциализацию потребуется массовое развертывание всех доступных сегодня ресурсов.
Энергобезопасность во главе
Игнорировать энергетический переход нельзя. Однако надо помнить, что первостепенная задача глобального топливно-энергетического комплекса –бесперебойное обеспечение людей доступными и надежными энергоресурсами.
До тех пор, пока возобновляемая энергетика не сможет в полном объеме обеспечивать растущие потребности населения Земли, традиционная энергетика продолжит занимать доминирующее положение в мировой экономике.
Наряду с прогнозами безуглеродного развития, у МЭА есть и более консервативные сценарии, в которых потребление нефти и газа продолжает расти вплоть до 2040 года.
Ископаемые источники энергии также могут быть экологически нейтральными с учетом развития и применения современных технологий по улавливанию и утилизации выбросов, а принятие мер адаптации к изменениям климата позволит обеспечить необходимый уровень экологической безопасности при их добыче и транспортировке.
Газовоз «Энергетический прогресс», Находка
Источник: vladsv / Depositphotos.com
При этом главенствующая роль в энергетике будущего будет отводиться природному газу, в том числе СПГ, как наиболее экологически чистому источнику энергии. Согласно прогнозам МЭА, его мировое потребление может вырасти на 2 п. п. до 25 % к 2040 году.
Еще одним переходным источником энергии может стать водородная энергетика. И хотя сегодня среди мировых экспертов нет единого мнения о потенциальных объемах мирового рынка водорода – диапазон оценок глобального спроса на него к 2050 году колеблется в пределах от нескольких десятков миллионов до почти 700 млн тонн в год. В настоящее время в мире существует порядка 200 водородных проектов по всей цепочке создания стоимости. Если все эти проекты будут реализованы, по прогнозу Hydrogen Council&McKinsey, общие инвестиции в водород до 2030 года превысят 300 млрд долларов, что эквивалентно 1,4 % глобального финансирования энергетики.
Россия в энергетическом переходе
Несмотря на богатство нашей страны углеводородными источниками энергии, Россия поддерживает стремления мирового сообщества по борьбе с изменением климата. В 2016 году с российской стороны было подписано и в 2019 году принято Парижское соглашение по климату, а в рамках его реализации в ноябре 2020 года президентом Российской Федерации издан указ о сокращении выбросов парниковых газов.
Уже сегодня более 80 % выработки электроэнергии происходит на основе низко- и безуглеродных источников энергии: газа, атомных и гидроэлектростанций, ВИЭ. При этом Энергетической стратегией России на период до 2035 года предусмотрена дальнейшая диверсификация энергетического баланса с увеличением в нем доли «чистой» энергии.
Для этого в России наращиваются компетенции в возобновляемой энергетике и развиваются технологии производства водорода с прицелом на его использование внутри страны и для поставок на экспорт, ведется разработка накопителей энергии, стимулируются энергоэффективные практики, и переход компаний ТЭК на принципы наилучших доступных технологий.
Прошлый год стал уникальным для нашей страны: впервые объемы вводов генерирующих объектов на основе солнца и ветра превысили объемы ввода традиционной генерации. Для дальнейшего стимулирования расширения использования «зеленой» энергетики в начале июня 2021 года правительство утвердило механизмы поддержки отрасли до 2035 года.
В соответствии с документом, в период 2025–2035‑х годов предусмотрено выделение 360 млрд рублей, за счет которых может быть обеспечено строительство дополнительных 6,7 ГВт новой мощности ВИЭ.
Кроме того, определены новые правила и принципы проведения конкурсных отборов проектов: самое существенное из них состоит в переходе от практиковавшихся ранее отборов по принципу снижения заявленных затрат инвесторов к отбору по критерию минимизации комплексных показателей эффективности проектов ВИЭ, то есть, по сути – от объемных ограничений к стоимостным.
Способствовать развитию отечественных технологий возобновляемой энергетики призваны новые требования по локализации и экспорту основного оборудования в рамках проектов по ДПМ ВИЭ. Эти правила позволят объективно оценивать качество продукции соответствующей отрасли и обеспечить ее стимулирование к выходу на международные рынки сбыта.
Потенциальные объемы экспорта водорода из России могут составить 10–20 % от мирового рынка водорода или до 0,2 млн т в 2024 году, 2–7 млн т в 2035 году и 7,9–33,4 млн т в 2050 году
Предусматривается, что реализация указанных мер позволит, начиная с 2036 года, прекратить меры по субсидированию объектов ВИЭ с использованием механизмов оптового рынка электроэнергии и мощности и сделать российскую «зеленую» энергетику конкурентоспособной на внутреннем и мировых рынках.
Для создания в стране правовых условий развития микрогенерации в 2019 году был принят соответствующий закон, устанавливающий ключевые требования к таким объектам генерации и предоставляющий право их владельцам продавать излишки электроэнергии на розничных рынках.
Кармалиновская ВЭС, Ставропольский край
Источник: «НоваВинд»
Еще одним важным направлением работы Правительства России является развитие возобновляемой энергетики. В октябре прошлого года была утверждена соответствующая дорожная карта, направленная на увеличение производства и расширение сферы применения водорода в качестве экологически чистого энергоносителя, а также вхождение страны в число мировых лидеров по его производству и экспорту.
Потенциальные объемы экспорта водорода из России на мировой рынок, по экспертным оценкам Российского энергетического агентства Минэнерго России, могут составить 10–20 % от рынка международной торговли водородом или до 0,2 млн тонн в 2024 году, 2–7 млн тонн в 2035 году и 7,9–33,4 млн тонн в 2050 году, в зависимости от темпов декарбонизации мировой экономики и роста спроса на водород на мировом рынке.
Стратегические инициативы и ключевые меры по развитию водородной энергетики в России на среднесрочный и долгосрочный период определены в разработанной концепции развития отрасли.
В частности, документом предусматривается создание в стране научно-технической инфраструктуры – инжиниринговых центров и полигонов, главным направлением деятельности которых станет полный цикл создания технологий получения, хранения, транспортировки, применения водорода от уровня научных исследований до этапа их коммерциализации.
При этом одной из первостепенных задач должна стать разработка конкурентоспособных технологий производства водорода как из ископаемого сырья, в первую очередь природного газа, так и электролизом воды на базе атомных электростанций и объектов возобновляемой энергетики.
Способствовать созданию экспортно-ориентированного производства водорода и обеспечению его поставки на внутренний рынок будут региональные кластеры, которые могут быть организованы при активном участии центров инженерно-технологических компетенций.
Наряду с кластерами для формирования локальных рынков планируется организация производства низкоуглеродного водорода на экспортно-ориентированных промышленных предприятиях, использующих такое топливо в процессе производства продукции, создание полигонов производства и апробации использования водорода в качестве накопителя энергии, опытных образцов водородного автомобильного и железнодорожного транспорта, а также заправочных станций для них, реализация пилотных проектов по использованию водорода в жилищно-коммунальном хозяйстве при условии подтверждения их безопасности и экономической эффективности.
Не менее важная роль в развитии водородной энергетики проектом концепции отводится формированию необходимых кадровых компетенций и налаживание международного сотрудничества.
Вместе с тем до строительства всей необходимой инфраструктуры поставок и переориентации производств, транспортного и жилищного сектора под использование новых источников энергии Россия, как один из ключевых игроков на мировых рынках и надежный партнер для европейских и восточных стран, будет продолжать развитие традиционной энергетики, в частности, природного газа, уделяя особое внимание повышению их экологичности.
Для этого уже сегодня ведется работа по улучшению показателей тепловой экономичности в генерации, приоритетному использованию технологий комбинированной выработки тепловой и электрической генерации, сокращению выбросов метана как при транспортировке природного газа, так и при добыче нефти, повышению доли утилизации попутного нефтяного газа.
Такое сбалансированное развитие российского ТЭК позволит внести нашей стране свой вклад в достижение глобальных целей борьбы с изменениями климата, развить новые компетенции для выхода на мировые высокотехнологичные рынки и обеспечить энергетическую безопасность как внутренних потребителей, так и зарубежных партнеров.
Энергетический переход как новый вызов мировой нефтегазовой отрасли
Мастепанов А.М.
В статье рассмотрены вопросы перехода человечества к энергетике будущего, получившего название «энергетического перехода» – Energy Transition (или энергетической трансформации – Global Energy Transformation). Рассмотрены основные концепции, постулаты, сценарии и дорожные карты, направленные на обеспечение такого перехода в глобальном масштабе, показаны его возможные результаты: объёмы и структура глобального энергопотребления, динамика спроса на нефть и природный газ. Сделаны выводы, что рассмотренные тенденции и новации необходимо учитывать и Российской Федерации, тем более, что для её газовой промышленности энергетический переход открывает дополнительные возможности.
Ключевые слова: энергетический переход, технологии, инновации, энергопотребление, энергоэффективность, ВИЭ, нефть, природный газ, уголь, электроэнергетика.
Среди различных глобальных вызовов, с которыми столкнулась мировая энергетика в начале XXI века, особое значение своей комплексностью и многогранностью имеет так называемый энергетический переход – Energy Transition (или энергетическая трансформация – Global Energy Transformation).
Немецкий термин «Energiewende», который можно перевести как «энергетический переход», «энергетический поворот», «энергетическая революция» в значении изменения всей глобальной энергетики, впервые появился в 1980 г. как название одной из публикаций немецкого научно-исследовательского Института Прикладной Экологии (Öko-Institut). К началу 2000-х гг. его значение качественно изменилось, и в настоящее время он стал своеобразным символом грядущих перемен в глобальной энергетике – перехода человечества к экологически чистой энергетике (и экономике в целом) в целях устойчивого развития и предотвращения негативных изменений климата нашей планеты.
Обусловленный растущей обеспокоенностью общественности проблемами изменения климата, энергетический переход нацелен на решение климатической проблемы путём отказа от углеводородного топлива – угля, нефти и природного газа, и перехода к малоуглеродной и безуглеродной энергетике[2], поскольку потребление и производство энергии в настоящее время составляют около двух третей глобальных выбросов парниковых газов [1].
Значимость проблемы усугубляется прогнозируемой динамикой развития энергопотребления, обусловленной ростом населения (по оценкам ООН, до почти 10 млрд. чел. к 2050 г.) и экономики (по данным PwC, глобальный ВВП почти утроится к этому году) [2].
В настоящее время в международных научно-аналитических и экспертных кругах рассматривается целый ряд различных концепций, постулатов, сценариев и дорожных карт, направленных на обеспечение такого перехода в глобальном масштабе. Наиболее известны из них такие, как:
Общим для всех этих исследований является то, что энергетический переход трактуется как комплекс инновационных мероприятий в ходе индустриальной трансформации всего общества; как процесс, определяющий средне- и долгосрочную эволюцию энергетических систем на базе значительного расширение применения ВИЭ и соответствующего сокращения использования ископаемого топлива, прежде всего угля и нефти, при одновременном существенном росте эффективности использования энергоресурсов/энергии по всей цепочке от производства до конечного потребления.
Основными задачами энергетического перехода в трактовке этих исследований являются: стабилизация глобальных выбросов парниковых газов, удовлетворение будущего спроса на энергию и расширение доступа населения к надёжной чистой электроэнергии.
Кроме того, как отмечается в уже упомянутом исследовании IRENA (Global Energy Transformation: A roadmap to 2050. 2018), такой подход является более выгодным с точки зрения экономики, социума и окружающей среды, нежели подход, основанный на текущих планах и политиках. Однако глобальная энергетическая система должна претерпеть существенное преобразование — трансформироваться из системы, повсеместно основанной на ископаемом топливе, в систему, повышающую эффективность и основанную на возобновляемой энергии. Такое преобразование глобальной энергетической системы, считающееся апогеем «энергетической революции», которая уже полным ходом идёт во многих странах и регионах, может создать более процветающий и всеобъемлющий мир [3].
Причём, как подчёркивается в исследованиях Всемирного экономического форума (ВЭФ), этот переход должен состояться без нарушения баланса «энергетического треугольника»: безопасность и доступ; экологическая устойчивость; экономическое развитие и рост [2].
Хорошей иллюстрацией такого подхода к решению климатических проблем является разработанный МЭА в 2017 г. климат ориентированный сценарий развития мировой энергетики, обеспечивающий ограничение будущего глобального повышения температуры на поверхности Земли до 2°C к 2100 г. – 2°C Scenario (или 2DS) (рис. 1 и 2).
Источник: [4]
Рис. 1. Динамика глобального ВВП, спроса на первичные энергоресурсы и выбросов углекислого газа
Источник: [4]
Рис. 2. Глобальный спрос на первичные энергоресурсы, 2014 — 2060 гг.
Следует также отметить, что энергетический переход, то есть переход к принципиально иной энергетике – энергетике будущего – (а сейчас это, прежде всего, политическая цель) стал возможен в результате целого ряда технологических инноваций, достигнутых в начале XXI века в энергетическом секторе мировой экономики.
В области производства энергии – это, прежде всего, солнечная фотовольтаика, масштабное использование энергии ветра, первые достижения в разработке промышленных накопителей энергии, эффективная добыча нетрадиционных ресурсов нефти и газа. В сфере энергопотребления – развитие электрических транспортных средств и рост энергоэффективности. И там, и там – достижения 4-й промышленной революции: активное внедрение киберфизических систем, автоматизации и роботизации производственных процессов, развитие «Интернета вещей»» (IoT) и цифровых технологий.
В то же время отказ от углеводородной энергетики – это процесс, растянутый во времени и идущий неравномерно. Он обусловлен эволюцией технологий, с одной стороны, и необходимостью достижения климатических целей – с другой. Основной тренд очевиден, однако остаётся неопределённость в темпах изменений [5].
Источник: на основе [6]
Рис. 3. Некоторые базовые взаимосвязи экономики и энергетики
Эта неопределённость побуждает ведущие международные и национальные аналитические центры с одной стороны строить множество различных сценариев, охватывающих, по сути, практически все возможные варианты развития ситуации, а с другой – заявлять, что их прогнозы – это, в общем-то, и не прогнозы, не предсказания того, что может произойти. Это всего лишь исследование тех путей, по которым мир может развиваться при соблюдении определённых условий, и тех действий, которые могут привести к такому развитию событий, это – всего лишь основа для размышлений о будущем глобальной энергетики [8]. В полной мере сказанное относится и к концепции энергетического перехода.
В результате в долгосрочных прогнозах развития мировой энергетики, разрабатываемых этими центрами в последние годы, оценки и тенденции глобального спроса на энергию и потребления углеводородов (нефти и природного газа) зачастую прямо противоположные.
Так, в базовом сценарии последнего прогноза МЭА (World Energy Outlook – WEO-2018) – Сценарии новой политики – рост мирового спроса на энергоресурсы, в том числе на нефть и газ, замедляется, но не достигает пика до 2040 г.
В 2040 г. спрос на нефть, без учёта жидкого биотоплива, составляет 106,3 млн. барр./сут. или 4 894 млн. т н.э., что на 10,% больше, чем в 2017 г., а на природный газ – 4 436 млн. т н.э. (рост почти на 43%). Суммарно же нефть и газ обеспечат почти 53% мирового энергопотребления [8].
Напротив, в новом для МЭА Сценарии устойчивого развития, который идеологически близок концепции энергетического перехода и предусматривает комплексную стратегию реализации ключевых, связанных с энергетикой, элементов повестки дня ООН в области устойчивого развития[3], пик спроса на нефть достигается уже к 2020 г. на уровне 97 млн. барр./сут. А к 2030 г. достигается как пик спроса на газ (4318 млрд. куб. м), так и пик суммарного энергопотребления на уровне 13 820 млн. т н.э. Соответственно, в 2040 г. на нефть и газ будет приходиться только 48% мирового энергопотребления [8].
Продолжение быстрого роста мирового потребления нефти и газа в период до 2040 г. прогнозируется и Управлением энергетической информации США [9]. В его последнем IEO-2018 к 2040 г. глобальный спрос на нефть составит порядка 229 квадриллионов британских тепловых единиц (БТЕ), или 31% всего мирового энергопотребления, а природного газа – 182 квадриллиона БТЕ или почти 25% (рис. 4).
Оценки Секретариата ОПЕК (World Oil Outlook 2018) близки к оценкам базового сценария последнего прогноза МЭА. Они также исходят из того, что мировой рост спроса на нефть и природный газ в перспективе будет осуществляться замедляющимися темпами и составят в 2040 г., соответственно, 111,7 млн. барр./сут., или 27,8% от мирового потребления первичных энергоресурсов, и 91,3 млн. барр. н.э./сут., или 25,0% [10].
Источник: [9]
Рис. 4. Прогноз динамики мирового потребления первичных энергоресурсов, квадриллионов британских тепловых единиц
В прогнозе ВР Energy Outlook 2019 рассматривается целый ряд сценариев: базовый – Сценарий эволюционного перехода (Evolving transition scenario) и альтернативные – Сценарий быстрого перехода, «Больше энергии», «Меньше углерода», «Меньше глобализации», «Запрет одноразовых пластиков», «Более значительные реформы» и др. Соответственно, спрос на нефть в этом прогнозе оценивается на уровне 2040 г., в зависимости от сценария, от 80 млн. барр./сут. (23% от глобального энергопотребления в Сценарии быстрого перехода), до 108 млн. барр./сут. (27,2%) в базовом Сценарии эволюционного перехода, и до 130 млн. барр./сут. в Сценарии «Больше энергии». Спрос на природный газ варьирует от 4343 млн. т н.э. в Сценарии быстрого перехода (26%), до 4617 млн. т н.э. в Сценарии эволюционного перехода (26%) [11].
В прогностических исследованиях, выполняемых аналитическими структурами, ориентирующимися на устойчивое развитие, безусловное исполнение целевых установок Парижского соглашения по климату и возобновляемые источники энергии, заложены существенно более высокие темпы перехода к мало- и безуглеродной энергетике – именно такие, которые и обеспечивают реализацию концепции энергетического перехода.
При этом многие эксперты, даже из среды идеологов и приверженцев энергетического перехода, уверены, что в среднесрочной перспективе в качестве альтернативного варианта – «переходного источника энергии» (bridging energy resource) – можно рассматривать вопрос увеличения использования природного газа, поскольку газ, несмотря на его углеводородную природу, является относительно чистым источником энергии[4] и позволяет найти оптимальное решение триединой задачи: удовлетворить растущий глобальный спрос на энергию и обеспечить сокращение выбросов как углекислого газа (климатическая задача), так и других вредных и загрязняющих атмосферу веществ (улучшение качества атмосферного воздуха).
Что касается более отдалённой перспективы, то подобную роль природный газ может играть только в сочетании с набором технологий, обеспечивающих улавливание, утилизацию и хранение/захоронение двуокиси углерода [13].
Так, в представленном компанией DNV GL 10 сентября 2018 г. в Лондоне прогностическом исследовании «Energy Transition Outlook 2018. A global and regional forecast to 2050» [14] отмечается, что достижения в области энергоэффективности и использования ВИЭ позволяют предвидеть большие изменения и в объёмах глобального спроса на первичную энергию, и в её структуре. В частности, суммарное потребление первичных энергоресурсов достигнет своего пика (15 809 млн. т н.э.) уже 2032 г., а конечное – в 2035 г. (11 224 млн. т н.э.). К 2050 г. эти объёмы снизятся, соответственно, до 13 994 и 10 746 млн. т н.э. При этом пик спроса на нефть (4 033 млн. т н.э. или 91,2 млн.барр./сут.) будет достигнут уже в 2023 г., после чего потребление нефти начнёт снижаться и составит в 2050 г. всего 2 052 млн. т н.э. (46,4 млн.барр./сут.). Тем самым доля нефти в глобальном потреблении первичных энергоресурсов составит всего 15%. Спрос на природный газ достигнет пика в 2034 г. (186 EJ в год), после чего начнёт постепенно снижаться. В результате доля газа в глобальном энергопотреблении, достигнув пика в 28% в середине 2030-х гг., снизится к 2050 г. до 25%. А суммарно на нефть, уголь и природный газ в 2050 г. будет приходиться только половина потребляемой человечеством энергии (рис. 5).
Источник: [14]
Рис. 5. Динамика мирового потребления первичных энергоресурсов при реализации концепции энергетического перехода (версия DNV GL)
Ещё более амбиционные цели ставятся Агентством IRENA в вышедшей в 2018 г. работе «Преобразование глобальной энергетической системы: дорожная карта до 2050 г.» [3]: увеличение доли ВИЭ в суммарном потреблении первичных энергоресурсов к 2050 г. до 66% (в том числе в электрогенерации – до 85%) при снижении самого энергопотребления до уровня меньшего, чем был в 2015 г.[5] Соответственно снижаются и объёмы потребления нефти (до примерно 24 млн. барр./сут.) и природного газа, пик спроса ожидается примерно в 2027 г. Тем не менее, природный газ останется крупнейшим источником ископаемого топлива и в 2050 г.
В издании 2019 г. Агентство IRENA показывает среднегодовые объёмы потребления ископаемых видов топлива в 2016-2050 гг. Они таковы: нефти – всего 22 млн.барр./сут. против 95 млн. барр./сут. в 2010-2017 гг., природного газа – 2250 против 3752 млрд. куб. м, и угля – 713 млн.т в угольном эквиваленте против 5357 млн. т, соответственно [15].
Существенно меняется в концепции энергетического перехода роль и сущность основных акторов нефтегазовой отрасли – нефтегазовых компаний. Глобальный энергетический переход ставит перед ними уникальные задачи, требуя от них по-новому адаптировать свои стратегии и основные направления деятельности исходя из всё более усложняющихся взаимосвязей отрасли с другими секторами экономики и социально-экономическим развитием в целом (рис. 6).
Источник: [16]
Рис. 6. Взаимосвязи нефтегазовой отрасли в энергетики будущего
Таким образом, концепция энергетического перехода, накладывая существенные ограничения и создавая дополнительные риски для развития нефтяной отрасли, оставляет более широкие возможности для газовой промышленности.
Как уже было отмечено выше, потребление углеводородов не рухнет в одночасье и ещё достаточно долго, по крайней мере, до 2035-2040 гг., нефть и природный газ сохранят свою роль в формировании мирового энергобаланса как одних из основных энергоресурсов. Но происходить это будет на фоне ожидающегося системного кризиса, который охватит как саму экономику и энергетику, так и политику, включая международные отношения, в условиях высокой степени неопределённости практически каждого составного элемента, из которых складывается общая картина энергетики будущего [17].
Следует также учитывать, что изменения в глобальном балансе между спросом и предложением на нефть и газ окажут существенное влияние как на будущий энергетический ландшафт и формирование всей энергетической карты мира, так и на геополитику в целом, что, в свою очередь, скажется на функционировании энергетических рынков. В частности, как отмечают эксперты ВЭФ, международные усилия по принятию политики, направленной на смягчение последствий использования ископаемых видов топлива, создают геополитические проблемы не только для богатых нефтью и газом стран, но и для развивающихся экономик, в которых спрос на энергию будет продолжать расти наряду с ростом индустриализации [16].
В полной мере сказанное относится и к России, к её нефтегазовым компаниям, тем более что энергетический переход – это не только вызовы, но и новые возможности, особенно для газовой отрасли. Исследования, проведенные ИПНГ РАН, свидетельствуют, что в настоящее время Россия не имеет сдерживающих факторов в плане добычи газа со стороны ресурсно-сырьевой базы. Перспективные уровни производства будут определяться только потребностями основных энергетических и газовых рынков в Европе и странах АТР, а также внутренним спросом на газовое топливо. Поэтому, располагая уникальными по качеству ресурсами и возможностями, Россия вполне справедливо может претендовать на роль ведущей мировой газовой державы и крупнейшего экспортёра как трубопроводного, так и сжиженного газа, внося, тем самым, свой ощутимый вклад в решение глобальных проблем энергетического переходного периода.
Статья подготовлена по результатам работ, выполненных в рамках Программы государственных академий наук на 2013 — 2020 годы. Раздел 9 «Науки о Земле»; направления фундаментальных исследований: 131. «Геология месторождений углеводородного сырья, фундаментальные проблемы геологии и геохимии нефти и газа, научные основы формирования сырьевой базы традиционных и нетрадиционных источников углеводородного сырья» и 132 «Комплексное освоение и сохранение недр Земли, инновационные процессы разработки месторождений полезных ископаемых и глубокой переработки минерального сырья», в рамках государственного задания по темам «Фундаментальный базис инновационных технологий нефтяной и газовой промышленности»,№ АААА-А16-116031750016-3.
[1]Алексей Михайлович Мастепанов – д-р экон. наук, профессор Российского государственного университета нефти и газа (национального исследовательского университета) имени И.М. Губкина, академик РАЕН, руководитель Аналитического центра энергетической политики и безопасности ИПНГ РАН, член Совета директоров Института энергетической стратегии, г. Москва; e-mail: amastepanov@mail.ru.
[2] В связи с этим энергетический переход иногда называют декарбонизацией энергетической системы.
[3] Включая доступ к энергии, качество воздуха и климатические цели.
[5] Без учёта энергоресурсов, расходуемых на нетопливные нужды.