Что такое энтальпия простыми словами в термодинамике
Основы теплотехники
Что такое энтальпия?
Попробуем уяснить физический смысл и суть понятия энтальпия, которое широко используется при расчетах и прогнозировании различных процессов в теплотехнике.
Уравнение первого закона термодинамики, выражающее закон сохранения энергии в термодинамических процессах, можно преобразовать к следующему виду:
Слово энтальпия в переводе с греческого означает «нагреваю».
Энтальпия тоже является параметром состояния, поскольку составляющие u и pv имеют для каждого состояния вполне определенные значения. Тогда первый закон термодинамики можно записать в виде:
Выражение (cv + T) в соответствии с уравнением Майера можно выразить через cp :
Значение энтальпии различных веществ в разных состояниях приведены в справочниках.
Энтальпия используется в вычислениях для определения разницы уровней энергии между двумя состояниями термодинамической системы.
Это бывает необходимо для настройки оборудования и определения коэффициента полезного действия процесса.
Понятие энтропии
В переводе с греческого слово «энтропия» означает превращение.
Этот параметр не имеет физического смысла и введен формально на основании математических построений для облегчения решения многих теплотехнических задач применительно к идеальному газу.
Произведение энтропии на изменение температуры системы характеризует изменение энергии системы. При этом даже если энергия системы будет изменяться, энтропия этой системы может оставаться неизменной. Очевидно, что при изотермических процессах (температура системы неизменна) составляющая энергии системы в которую входит энтропия равна нулю.
В общем случае изменение энергии термодинамической системы не является обязательным условием изменения энтропии этой системы.
Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине «Основы гидравлики и теплотехники»
(в формате Word, размер файла 68 кБ)
Скачать рабочую программу
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):
Скачать календарно-тематический план
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):
Что такое энтальпия
Итак, что же такое энтальпия? Если говорить совсем упрощенно, энтальпия — это энергия, которая доступна для преобразования в теплоту при определенном постоянном давлении. Когда я учился в университете, преподаватель помню, говорил нам, что энтальпию условно можно называть теплосодержанием, так как при постоянном давлении изменение энтальпии равно количеству теплоты, подведенной к системе.
И вообще, сам термин энтальпия составлен из древнегреческих слов — тепло и приставки — в. Это сочетание слов можно понимать как «нагревать». А впервые в термодинамику этот термин был введен ученым Д.Гиббсом. Ну это чтобы понятнее было, так как энтальпия, также кстати, как и энтропия, не может быть измерена непосредственно, как например давление или температура. Энтальпия определяется только расчетным путем. То есть, образно говоря, ее нельзя «потрогать», «пощупать».
Рассмотрим более подробно. Значение энтальпии вещества определяется из выражения:
где u – внутренняя энергия; p, u – давление и удельный объем рабочего тела в том же состоянии, для которого взято значение внутренней энергии.
То есть, можно сказать, что энтальпия любой термодинамической системы представляет собой сумму внутренней энергии системы и потенциальной энергии источника внешнего давления.
Энтальпия находится как сумма величин, которые определяются состоянием вещества, представляет собой функцию состояния и измеряется в Дж/кг. Чаще энтальпия во внесистемной системе измерений измеряется в ккал/кг. Энтальпия является одной из вспомогательных функций, использование которой позволяет значительно упрощать термодинамические расчеты. Так например, огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах, камерах сгорания газовых турбин и реактивных двигателей, теплообменных аппаратах) осуществляется при постоянном давлении. По этой причине в таблицах термодинамических свойств обычно приводятся значения энтальпии.
В технической термодинамике пользуются значениями энтальпии, которые отсчитываются от условно принятого нуля. Абсолютные значения этих величин весьма трудно определить, так как для этого необходимо учесть все составляющие внутренней энергии вещества при изменении его состояния от 0 К. В таблицах и на диаграммах часто приводятся значения i и s, которые отсчитываются от 0 °С.
В заключение можно сказать, что энтальпия аналогично внутренней энергии и другим термодинамическим параметрам имеет вполне определенное значение для каждого состояния, то есть является функцией состояния рабочего тела.
Энтальпия — что это такое простыми словами
Про энтальпию на простом языке
При работе с какими-либо расчётами, вычислениями и выполнении прогноза разнообразных явлений, связанных с теплотехникой, каждый сталкивается с понятием энтальпия. Но для людей, специальность которых не касается теплоэнергетики или которые лишь поверхностно сталкиваются с подобными терминами, слово «энтальпия» будет наводить страх и ужас. Итак, давайте разберёмся, действительно ли всё так страшно и непонятно?
Если попытаться сказать совсем просто, под термином энтальпия понимается энергия, которая доступна для преобразования в теплоту при некотором постоянном давлении. Понятие энтальпия в переводе с греческого значит «нагреваю». То есть формулу, содержащую элементарную сумму внутренней энергии и произведенную работу, называют энтальпией. Эта величина обозначается буквой i.
Если записать вышесказанное физическими величинами, преобразовать и вывести формулу, то получится i = u + pv (где u – внутренняя энергия; p, u – давление и удельный объем рабочего тела в том же состоянии, для которого взято значение внутренней энергии). Энтальпия — аддитивная функция, т. е. энтальпия всей системы равна сумме всех составляющих её частей.
Термин «энтальпия» сложен и многогранен.
Но если постараться в нём разобраться, то всё пойдёт очень просто и понятно.
Ну, что же, механизм работы понятен. Вам лишь нужно внимательно читать и вникать. С термином «Энтальпии» мы уже разобрались, также привели и его формулу. Но тут же возникает ещё один вопрос: откуда взялась эта формула и почему энтропия связана, к примеру, с внутренней энергией и давлением?
Суть и смысл
Для того, чтобы попытаться выяснить физический смысл понятия «энтальпия» нужно знать первый закон термодинамики:
энергия не исчезает в никуда и не возникает из ничего, а лишь переходит из одного вида в другой в одинаковых количествах. Таким примером может служить переход теплоты (тепловой энергии) в механическую энергию, и наоборот.
Уравнение первого закона термодинамики нам нужно преобразить в вид dq = du + pdv = du + pdv + vdp – vdp = d(u + pv) – vdp. Отсюда мы видим выражение (u + pv). Именно это выражение и называется энтальпией (полная формула приводилась выше).
Энтальпия также является величиной состояния, потому что составляющие u (напряжение) и p (давление), v (удельный объём) имеют для каждой величины определенные значения. Зная это, первый закон термодинамики возможно переписать в виде: dq = di – vdp.
В технической термодинамике используются значения энтальпии, которые высчитываются от условно принятого нуля. Все абсолютные значения этих величин весьма трудно определить, так как для этого необходимо учесть все составляющие внутренней энергии вещества при изменении его состояния от О к К.
Формулу и значения энтальпии привёл в 1909 г. учёный Г.Камерлинг-Оннесом.
В выражении i — удельная энтальпия, для всей массы тела полная энтальпия обозначается буквой I, по всемирной системе единиц энтальпия измеряется в Джоулях на килограмм и рассчитывается как:
Функции
Энтальпия («Э») является одной из вспомогательных функций, благодаря использованию которой можно значительно упростить термодинамический расчёт. Так например, огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах или камере сгорания газовых турбин и реактивных двигателей, а также в теплообменных аппаратах) осуществляют при постоянном давлении. По этой причине в таблицах термодинамических свойств обычно приводят значения энтальпии.
Условие сохранения энтальпии лежит, в частности, в основе теории Джоуля — Томсона. Или эффекта, нашедшего важное практическое применение при сжижении газов. Таким образом, энтальпия есть полная энергия расширенной системы, представляющая сумму внутренней энергии и внешней – потенциальной энергии давления. Как любой параметр состояния, энтальпия может быть определена любой парой независимых параметров состояния.
Также, исходя из приведённых выше формул, можно сказать: «Э» химической реакции равна сумме энтальпий сгорания исходных веществ за вычетом суммы энтальпий сгорания продуктов реакции.
В общем случае изменение энергии термодинамической системы не является необходимым условием для изменения энтропии этой системы.
Итак, вот мы и разобрали понятие «энтальпии». Стоит отметить, что «Э» неразрывно связана с энтропией, о которой вы также можете прочесть позже.
Значение слова «энтальпия»
Проще говоря, энтальпия — это та энергия, которая доступна для преобразования в теплоту при определённом постоянном давлении.
Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня площадью S с грузом весом Р = pS, уравновешивающего давление газа р внутри сосуда, то такая система называется расширенной.
Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом Eпот = pSx = pV
Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H — аналогично внутренней энергии и другим термодинамическим потенциалам — имеет вполне определённое значение для каждого состояния, то есть является функцией состояния. Следовательно, в процессе изменения состояния
Изменение энтальпии (или Тепловой эффект химической реакции) не зависит от пути процесса, определяясь только начальным и конечным состоянием системы. Если система каким-либо путём возвращается в исходное состояние (круговой процесс), то изменение любого её параметра, являющегося функцией состояния, равно нулю, отсюда
Дифференциал энтальпии, выраженный в собственных переменных — через энтропию S и давление p:
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: впереться — это что-то нейтральное, положительное или отрицательное?
Энтальпия и энтропия
Вы будете перенаправлены на Автор24
Термодинамические свойства систем выражают при помощи характеристических функций и их производных. Вид характеристической функции зависит от переменных, которые используют при описании состояния системы. Так, если в качестве переменных избрать внутреннюю энергию и объем, то характеристической функцией может служить энтропия.
Функции состояния
$\sigma =f_<1>\left( x,y \right)dx+f_<2>\left( x,y \right)dy\, \left( 1\right)$,
К функциям состояния в термодинамике, например, можно отнести:
Функции состояния часто носят названия: термодинамические функции или термодинамические потенциалы.
Термодинамических функции имеется бесконечно много. Допустим, что нам известна одна термодинамическая функция, тогда функция от этой функции – термодинамический потенциал.
Энтальпия
Энтальпию, как физическую величину, предложил ввести А.У. Портер, как содержание тепла при неизменном давлении в 1922 году.
Энтальпией ($H$) называют функцию, которая определена равенством:
Готовые работы на аналогичную тему
При постоянном давлении можно записать, что:
Энтальпию можно связать с теплоемкостью при постоянном давлении соотношением:
$C_
=\left( \frac
\left( 4 \right),$
Полный дифференциал энтальпии ($H(S,p)$) можно записать так:
В процессе при постоянном давлении изменение энтальпии равно:
$\Delta H=\Delta U+p\Delta V=\Delta Q\left( 6 \right)$.
Энтальпию применяют при расчетах выделяющего тепла для процессов, происходящих при постоянном давлении.
Энтальпию сложной системы можно находить как сумму энтальпий отдельных ее компонент.
Пусть термодинамическая система состоит из нескольких веществ, тогда имеем:
$dH=TdS+Vdp+\sum\limits_i \mu_ dm_\left( 8 \right)$.
Энтальпию идеального газа можно выразить через коэффициент Пуассона этого газа (γ):
Энтропия
Энтропия, как и энтальпия, является функцией состояния.
Для обратимого процесса энтропию определяют как:
Формула (9) определяет энтропию с точностью до постоянной величины. Физическим смыслом обладает именно изменение энтропии, а не она сама.
Как и энтальпия, энтропия аддитивная величина:
$S=\sum\limits_i S_ \left( 11 \right)$,
$S_i$ – энтропия компоненты термодинамической системы.
Процесс в замкнутой термодинамической системе, протекающий без изменения энтропии называют изоэнтропийным. Это, например, адиабатный процесс, происходящий без теплообмена системы с внешней средой.
Энтропия имеет связь с вероятностью в термодинамике.
Формула Больцмана реализует связь термодинамической вероятности и энтропии:
$S=k_b\ln \left( W \right)$ (12),
Смысл энтропии в том, что она является мерой беспорядка в термодинамической системе. Большее количество микросостояний, которое осуществляет макросостояние, соответствует большей энтропии.
Если система находится в состоянии термодинамического равновесия, что соответствует наиболее вероятному состоянию системы, количество микросостояний наибольшее, энтропия в этом случае максимальна.
Соотношения Максвелла
Это означает, что только две из названных переменных являются независимыми.
Запишем полные дифференциалы от термодинамических потенциалов:
Используя выражения для дифференциалов термодинамических функций получим:
Получаем уравнение Максвелла:
Применяя сказанное выше полный дифференциал энтальпии можно записать как:
$dH=C_
dT+\left[ V-T\left( \frac<\partial V> <\partial T>\right)_
\right]dp\left( 14 \right)$,
Полный дифференциал энтропии:
Если в качестве независимых переменных использовать температуру и давление, тогда имеем:
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 29 03 2021