Что такое шестерни редуктора
Зубчатые передачи в редукторах
Зубчатые передачи известны несколько тысячелетий. Они встречаются как в небольших приборах, часах, так и в мощном оборудовании, например, турбине электростанции, буровой установке.
Зубчатая передача изобретена несколько тысячелетий назад и ее изобретатель неизвестен. Первые зубчатые колеса — деревянные, причем, современная форма зубьев (оптимизированная математически) возникла лишь недавно. Основной период времени это были тяжелые и громоздкие деревянные колеса с вбитыми стержнями по ободу, которые и выполняли роль зубьев. Они активно использовались на ветряных и водяных мельницах.
Очевидно, что зубчатое зацепление возникло после фрикционного, когда с одного вращающегося колеса пытались передать вращение на другое. Так получалось передавать лишь незначительную мощность, а попытка ее увеличения приводила к проскальзыванию колес, вот и возникла идея сделать зубья, чтобы исключить такой недостаток. В результате передаваемая мощность резко выросла.
Любая зубчатая передача состоит как минимум из четырех элементов. Это сами зубчатые колеса (не менее двух), корпус, подшипники и валы. На небольших мощностях такой элемент как подшипники может отсутствовать. Например, зубчатые передачи в CD/DVD технике и ранее распространенных магнитофонах не имеют подшипников. Там просто ставится втулка из антифрикционного сплава или даже просто отверстия в корпусе (особенно в пластиковых корпусах). Промышленные редукторы уже все делаются на подшипниках за исключением специальных серий для управления очень небольшой мощностью.
Зубчатые колеса
Идеальный материал для зубчатых колес — легированная к абразивному износу сталь. Чтобы реализовать возможность передавать большие нагрузки, зубчатые колеса делают по более сложной схеме. Сама сталь выбирается относительно мягкой, а поверхностная закалка упрочняет только наружный слой. В результате получаются износостойкие зубья, которые не выкрашиваются от ударных нагрузок. Мелкие шестерни могут быть закаленными полностью.
Для зубчатых колес небольших редукторов используется латунь и различные пластмассы. Выбор этих материалов обусловлен их свойствами, позволяющими выполнять отливки под давлением с высокой точностью. Станочная обработка небольших шестерен неоправданно удорожает их производство, поэтому подобрана группа материалов, которой такая обработка не требуется. Редукторы с пластиковыми шестерёнками применяются даже в ответственных системах, например, в промышленных редукторах для управления клапанами, в сервоприводах стояночного тормоза автомобилей.
Перспективно покрытие зубьев антифрикционными материалами, например бронзой, однако эта практика ограничена ввиду быстрого стачивания таких покрытий. Чтобы снизить трение, зубчатым колесам требуется смазка, которая должна присутствовать на них постоянно во время работы.
Виды зубчатых передач
Корпуса зубчатых передач (картеры редукторов)
Задача корпуса — обеспечение правильного положения зубчатых колес относительно друг друга и в пространстве для передачи вращения через валы. Для всех редукторов оптимален полностью закрытый корпус. Поэтому всегда стараются использовать именно его. Открытые зубчатые передачи, незащищенные от пыли и механических воздействий, постепенно выходят из обращения.
Шестерни могут составлять до 50% стоимости редуктора. Их изготавливают с высокой точностью. Высший класс — хонинговка зубьев. Профиль зубьев рассчитан математически, и зуборезный станок нарезает его в несколько приемов. Зубья имеют рабочие поверхности, которые обрабатываются. Остальная поверхность может быть грубой отливкой. При необходимости шестерню балансируют, наваривая грузики. Особенно точная балансировка требуется маховым шестерням.
Если шестерни находятся вне закрытого корпуса, то им нельзя обеспечить подачу жидкой смазки. Такие редукторы работают с густой смазкой, которая снижает ресурс и КПД. Эти решения годятся лишь для небольших мощностей или режима работы с редкими периодическими включениями.
У редукторов в герметичном картере, обратная ситуация. Через них можно передавать значительные мощности. А благодаря внутренней защите от коррозии и пыли они могут работать в средах с высоким содержанием абразивной пыли: горнорудная промышленность, дробилки, проходческие комбайны, нефтяные качалки. Специальное климатическое тропическое исполнение маркируется буквой «Т» в названии.
Валы и подшипники
Ни одна зубчатая передача не обходится без валов. Подшипники отсутствуют только в маломощных редукторах и сервоприводах. На средней и большой мощности обязательны шариковые или роликовые подшипники. Распространенные в промышленности червячные пары оснащаются торцевым подшипником. Также он может быть коническим.
Валы и подшипники являются телами вращения, поэтому изготавливаются на токарных станках с тем допуском размеров, который указан в технологической карте производителя. Повышение точности ведет к увеличению стоимости изготовления. За несколько столетий совершенствования металлообработки выверен оптимальный баланс между точностью изготовления валов и подшипников и их стоимостью.
Подшипники в шестеренчатых передачах ставятся унифицированные необслуживаемые или, рассчитанные на автоматическую жидкую смазку. Установочные гнезда могут быть либо глухими, либо сквозными, что делается чаще, так как проще технологически. Гнезда под подшипники обрабатываются на фрезерном станке с высокой точностью. Посадка подшипников проводится прессом. Такое соединение не требует сальника и зазор получается столь малым, что масло не протекает.
Большие мощности передаются черед цилиндрические горизонтальные редукторы, где подшипники всех ступеней размещены на одной плоскости, причем она же является плоскостью соединения картера из двух половин. Получается технологичная схема, удобная для разборки и замены деталей.
Эксплуатация зубчатых передач
Эксплуатация возможная лишь в условиях, указанных производителем, как находящиеся в диапазоне допустимых. В первую очередь, это требования к скорости вращения. КПД электродвигателей растет с числом оборотов, чего нельзя сказать о зубчатых передачах. Они очень плохо работают на высоких оборотах, сильно нагреваясь и изнашиваясь. Авиационные редукторы, приводимые от газотурбинных двигателей со скоростью вращения десятки тыс об/мин имеют ресурс всего 2000 часов. Промышленный редуктор, эксплуатируемый на скорости вращения входного вала 1250 об/мин может проработать более 10 000 часов.
Основное число зубчатых передач рассчитано на эксплуатацию в диапазоне до 3000 об/мин. Это частоты вращения унифицированных общепромышленных электродвигателей и они кратны промышленной сети 50 Гц. В зависимости от типа обмоток двигателя, можно получать вращения 50 или 25 оборотов в секунду (3000 и 1500 об/мин, соответственно).
Узлами трения являются не только подшипники, но и обод каждой шестерни. Смазка подается с помощью устройства разбрызгивания масла. Оптимальная среда работы зубчатых передач — масляный туман. В ней обеспечивается хорошая смазка всех трущихся поверхностей и отсутствует гидродинамическое сопротивление. По этой причине картеры зубчатых передач заполняют лишь частично, периодически проводя замены масла.
Описание зубчатых пар применяемых в редукторах
Рисунок №1. Иллюстрация различных типов доступных передач
Зубчатые передачи и их механические характеристики широко используются в промышленности для передачи движения и мощности в различных механических устройствах, таких как часы, контрольно-измерительные приборы и оборудование, а также для уменьшения или увеличения скорости и крутящего момента в различных моторизованных устройствах, включая автомобили, мотоциклы. и машины. Другие конструктивные характеристики, включая материал, форму зубчатых колес, конструкцию зубьев, а также конфигурацию зубчатых пар, помогают классифицировать различные типы зубчатых колес. Каждое из этих зубчатых колес отличается характеристиками и имеют преимущества, подходящие для их дальнейшего применения в промышленном оборудовании.
Характеристики конструкции редуктора
Зубчатые передачи, для удовлетворения широкого спектра отраслей промышленности, имеют различные конструктивные исполнения и конфигурации. Эти характеристики позволяют классифицировать зубчатые колеса несколькими различными способами, которые включают в себя:
Форма шестерни
Большинство зубчатых колес имеют цилиндрическую форму, то есть зубья колес расположены вокруг корпуса, также бывают не круглые зубчатые колеса. Эти шестерни могут иметь эллиптические, треугольные и квадратные грани.
Механизмы в которых используются круглые зубчатые колеса, имеют только одно передаточное отношение, выраженное как для скорости вращения, так и для крутящего момента. Постоянство передаточного числа означает, что при одинаковом входном вращении (по скорости или крутящему моменту) редуктор обеспечивает одинаковую выходную частоту и усилие.
С другой стороны, редукторы, в которых используются не круглые зубчатые колеса, обеспечивают переменные отношения скорости и крутящего момента. Не круглые зубчатые колеса обеспечивают переменную скорость и крутящий момент, что позволяет выполнять различные по частоте движения. Кроме того, линейные зубчатые колеса, такие как зубчатые рейки, могут преобразовывать вращательное движение ведущей шестерни в поступательное движение (или комбинацию поступательного и вращательного движения) ведомой шестерни.
Дизайн зубчатых колес
Структура зубчатых колес
В зависимости от конструкции зубчатого колеса зубья либо врезаются непосредственно в заготовку, либо вставляются в виде отдельных компонентов. В большинстве случаев, когда шестерня изнашивается, ее нужно заменить целиком. Однако преимуществом использования зубчатых колес с отдельными компонентами зубьев является возможность индивидуальной замены изношенных зубьев. Эта возможность снижает общую стоимость ремонта редуктора с течением времени, поскольку отдельные зубья в разы дешевле по сравнению с полной заменой.
Расположение зубчатых колес
Зубья колеса обрезаются или вставляются на наружную или внутреннюю поверхность корпуса. На внешних зубчатых колесах зубья расположены на внешней поверхности корпуса, направленные наружу от центра зубчатой передачи. На внутренних зубчатых колесах зубья расположены на внутренней поверхности корпуса и направленны внутрь к центру зубчатой передачи. В сопряженных парах расположение зубьев шестерни на каждом из корпусов в значительной степени определяет движение ведомой шестерни.
Рисунок №2. Пример внутренней-внешней зубчатой пары.
Когда обе шестерни в сопряженной паре относятся к внешнему типу, ведущая шестерня и ведомая шестерня (и их соответствующий вал или базовый элемент) вращаются в противоположных направлениях. Если требуется чтобы входной и выходной валы вращались в одном направлении, для изменения направления вращения ведомой шестерни обычно используется промежуточная шестерня (то есть шестерня, расположенная между ведущей и ведомой шестерней).
Зубчатый профиль
Эвольвентные зубчатые колеса имеют форму, обозначенную эвольвентной кривой круга, которая представляет собой локус, образованный конечной точкой воображаемой линии, касательной к базовой окружности, когда линия вращается по окружности круга. Во всей промышленности большинство зубчатых колес используют профиль эвольвентного зуба как из-за простоты изготовления, так и из-за плавности работы. По сравнению с некоторыми другими профилями эвольвентный профиль состоит из меньшего количества кривых, что упрощает изготовление зубьев колеса и, следовательно, снижает стоимость производства оборудования. Преимущество эвольвентных зубьев шестерни заключается в равномерном распределении нагрузки. Равномерная нагрузка на все зубы позволяет эвольвентным зубчатым колесам работать более плавно, по сравнению с колесами с другими профилями зубьев.
По сравнению с профилем зубьев эвольвентного зубчатого колеса, эти профили редко используются для проектирования и изготовления зубчатых колес, за исключением использования в специализированном оборудовании. Например, трохоидальные зубчатые колеса часто используются в насосах, в вентиляции и часах. Несмотря на их ограниченное применение, трохоидальные и циклоидальные профили предлагают несколько преимуществ по сравнению с эвольвентным профилем, в том числе большой срок эксплуатации и ремонтопригодность.
Конфигурация осей редуктора
Конфигурация осей шестерни относится к ориентации осей, вдоль которых лежат валы, вокруг которых вращаются шестерни, относительно друг друга. Существует три основных конфигурации осей, используемых шестернями:
Конфигурации параллельных передач
Рисунок №3. Зубчатые колеса с конфигурацией параллельных осей.
Параллельные конфигурации включают в себя зубчатые колеса, соединенные с вращающимися валами на параллельных осях в одной плоскости. Вращение ведущего вала (и ведущего зубчатого колеса) происходит в направлении, противоположном направлению вращения ведущего вала (и ведомого зубчатого колеса). Такое расположение имеет высокую эффективность передачи мощности и движения. В параллельных передачах применяются: цилиндрические, винтовые, внутренние и реечные зубчатые колеса.
Пересекающиеся передачи
Рисунок №4. Зубчатые колеса с конфигурацией пересекающихся осей.
Непараллельные, непересекающиеся конфигурации зубчатых колес
Рисунок №5. Зубчатые передачи с непараллельной, непересекающейся конфигурацией осей.
Зубчатые пары с непараллельной, непересекающейся конфигурацией имеют валы, которые пересекаются (то есть не являются параллельными), но не находятся в одной плоскости (то есть не пересекаются). В отличие от параллельных и пересекающихся конфигураций, они имеют низкую эффективность движения и передачи энергии. Примеры непараллельных, непересекающихся зубчатых колес можно встретить в гипоидных и червячных редукторах.
Дополнительные характеристики конструкции редуктора
Помимо упомянутых выше конструктивных характеристик, существует несколько других вариантов, которые может принять во внимание инженер-конструктор выборе редуктора для конкретного применения. Некоторые характеристики, включают в себя конструкционный материал, обработку поверхности, количество зубьев, угол зубьев, тип смазки и метод смазки.
Различные типы передач и использования
Исходя из указанных выше конструктивных характеристик, существует несколько различных типов зубчатых колес.
Наиболее распространенные типы зубчатых колес, используемые в промышленности:
Цилиндрические зубчатые колеса
Рисунок №6. Пример цилиндрических зубчатых колес.
Простая конструкция зубьев цилиндрического зубчатого колеса обеспечивает высокую точность изготовления. Так же для цилиндрических зубчатых колес характерно отсутствие осевой нагрузки, они выдерживают высокую скорость и высокую нагрузку, что позволяет достичь высокую эффективность при работе. Некоторыми недостатками цилиндрических зубчатых колес являются величина напряжения, испытываемого зубьями шестерен, и шум, возникающий во время высокоскоростных применений.
Зубчатые колеса используются в различных механических установках, таких как часы, насосы, системы полива, машины для электростанций, погрузочно-разгрузочное оборудование и стиральные и сушильные машины, а также в редукторах. При необходимости в зубчатой передаче можно использовать несколько (то есть более двух) цилиндрических зубчатых колес, чтобы обеспечить более высокое передаточное отношение.
Винтовые зубчатые колеса
Рисунок №7. Пример винтовой зубчатой передачи.
Подобно цилиндрическим зубчатым колесам, винтовые обычно имеют конфигурацию параллельных осей с сопряженными зубчатыми парами. При правильном совмещении они могут использоваться для привода непараллельных непересекающихся валов. В отличие от цилиндрических зубчатых колес, винтовые колеса выполнены с зубьями, которые вращаются вокруг корпуса колеса под углом к поверхности. Винтовые зубчатые колеса изготавливаются с правосторонним и левосторонним углом зубьев, причем каждая зубчатая пара состоит из правого и левого зубчатых колес с одинаковым углом наклона.
Конические зубчатые колеса
Конические зубчатые колеса представляют собой конусообразные форму с зубьями, расположенными вдоль конической поверхности. Эти зубчатые колеса используются для передачи движения и момента между пересекающимися валами, когда требуется изменение оси вращения. Как правило, конические зубчатые колеса используются для конфигураций валов, расположенных под углами 90 градусов.
Рисунок №8. Пример спиральной конической зубчатой пары.
Существует несколько типов конических зубчатых колес отличающихся конструкцией зубьев. Некоторые из наиболее распространенных типов конических передач включают прямые, спиральные и конические зубчатые колеса.
Червячные передачи
Червячная передача состоит из червячного колеса цилиндрического типа, сопряженного с червяком или винтовой передачей. Эти зубчатые колеса используются для передачи движения и мощности между непараллельными, непересекающимися валами. Они обычно имеют большие передаточные числа, что дает возможность для значительного снижения скорости. Также червячная передача плавно работает и не шумит.
Рисунок №9. Пример червячной пары.
Одно из отличий пар червячных передач состоит в том, что только червяк может вращать зубчатое колесо. Эта характеристика используется в оборудовании, где требуется блокировка механизмов. Недостатками червячных передач являются низкая эффективность трансмиссии и высокая величина трения между колесом и винтом, что частично компенсируется специальной смазкой.
Рисунок №10. Смазка, наносимая на пару червячных передач.
Применение различных типов передач
Шестерни. Виды и применение. Особенности и материал изготовления
Шестерни, зубчатки или зубчатые колеса – элементы зубчатой передачи, представляющей собой диск с зубьями. Устройство используется для отдачи крутящего момента путем зацепления с ответными зубьями других шестерней или зубчатого приводного ремня. При разнице диаметра контактной пары происходит передача оборотов от ведущей зубчатки на ведомую с ускорением или замедлением. Шестеренки используются в механизмах различной сложности, таких как часы, КПП автомобилей, редукторах, электромясорубках, блендерах, принтерах и т.д.
Материалы изготовления
Зубчатая передача используется в механизмах с различной нагрузкой, от совсем мизерной, к примеру, в наручных часах, до многотонной в промышленных редукторах.
Можно встретить шестерни из различных материалов:
Стальные и титановые отличаются высокой стойкостью к истиранию. Их зубцы выдерживают большие нагрузки. Они используются в механизмах с высокой скоростью оборотов или повышенной силой противодействия, поэтому для увеличения срока службы требуют применения смазочных материалов. Они способны работать в системах, где периодически происходит торможение массивных раскрученных элементов, так как их зубья устойчивы к динамическому воздействию.
Шестеренки из цветных металлов отличаются меньшей прочностью, однако обладают коррозионной стойкостью. Их часто применяют в механизмах с сухой сцепкой, без использования смазки. Нужно отметить, что взаимодействие шестерен из цветных металлов исключает образование искры. Это позволяет применять такие детали во взрывоопасной газовой среде.
Пластиковые зубчатки отличаются низкой прочностью. Они не предназначены на длительную работу на высоких оборотах, так как при нагреве в результате трения начинают плавиться. Их часто используют в механизмах игрушек, принтеров, блендеров, миксеров, а также прочей кухонной и бытовой технике. При заклинивании отдельных элементов зубчатой передачи зубцы на остальных пластиковых шестернях могут срываться, в результате чего механизм приходит в негодность.
Также можно встретить деревянные зубчатки. Такие шестерни не отличаются высокой прочностью, особенно в малых размерах. Их можно встретить в механизме старинных водяных и ветровых мельниц. Сейчас же они представлены в виде демонстрационных моделей зубчатой передачи, а также деревянных конструкторах.
Виды шестерен
Шестерни могут отличаться между собой не только по материалу изготовления, но и по другим параметрам:
Основание зубчатки может быть цилиндрическим, коническим или прямым. Кроме этого, зубцы могут располагаться по внешней или внутренней кромке. Они бывают прямыми, скошенными, или иметь другую форму.
В зависимости от тех или иных составляющих, их можно разделить на следующие виды:
Прямозубые
Это наиболее распространенная и простая в производстве шестерня. Она представляет собой круглый профиль, зубцы которого располагаются по окружности и являются строго параллельными относительно оси вращения. Их изготовление возможно как методом фрезерования, так и отливки в форму. Особенность прямозубых шестеренок в том, что они могут передавать крутящий момент только на элементы расположенные относительно них параллельно в одной плоскости. Такой способ передачи обеспечивает самый высокий КПД, так как люфты и трение при стыковке элементов получаются минимальными. Кроме этого прямозубая стыковка сопровождается сравнительно меньшим давлением на зубья. Работа механизма сопровождается меньшим нагревом.
Косозубые шестерни
Зубчатые колеса этого типа имеют зубцы расположенные под уклоном. За счет этого они получаются более длинными. Это способствует возможности увеличения на них нагрузки. Они работают менее шумно, кроме этого отличаются плавностью.
Увеличенная ширина зубцов сопровождается повышенным трением. Как следствие такая деталь нагревается больше. Для предотвращения потери ее прочностных характеристик, требуется использование улучшенной системы смазки.
Косозубое колесо используют в механизмах, где требуется передача мощного крутящего момента с высокими оборотами. В силу смещенного направления усилия относительно посадочного вала такой зубчатки, при ее установке желательно применение упорных подшипников. Они препятствуют расхождению между сцепленными косыми шестернями, которые стремятся при вращении рассоединяться, так как каждый из них склонен к отклонению в разные стороны относительно друг друга.
С внутренним зацеплением
В более сложных механизмах используются шестеренки с зубьями расположенными по внутренней окружности. Их применение дает возможность обеспечить одинаковое направление вращения ведущего и ведомого вала. Это позволяет отказываться от дополнительных зубчаток, тем самым уменьшая габариты механизма. Такой технический прием можно встретить в конструкции насосов, а также в планетарной передаче. Производятся и действительно большие зубчатки с внутренним зацеплением, которые обеспечивают вращение поворотных механизмов кабины кранов и прочей землеройной, а также строительной техники.
Винтовые
Это легко угадываемые по форме профиля шестерни. Они имеют вид длинного цилиндра. Их зубья сделаны под винт, оборачиваемый вдоль цилиндра. Обычно такая зубчатка представляет собой вал с зубцами, а не диск как остальные.
Она используется для передачи крутящего момента на другую шестерню, расположенную относительно нее перпендикулярно. Причем сам узел примыкания получается достаточно компактным. Такая пара передает крутящий момент с понижающим или повышающим передаточным числом, поэтому ее часто можно встретить в конструкции редукторов.
Секторные
Это шестерня, зубья на которой нанесены не по всей окружности, а только частично на ширину сектора. За счет этого при сцеплении она делает неполный оборот, а только его часть, пока хватает зацепов. Обычно она используется в механизмах как ведущий элемент. Вращаясь на валу, она достигнув ответной шестерни цепляет ее и проворачивает на часть оборота. После прохождения ее зубцов, она вращается дальше, но последующая часть механизма останавливается до момента повторного примыкания зубцов. Таким образом, происходит шаговая передача крутящего момента.
Используя секторную шестерню можно обеспечить работу рывками от источника постоянного вращения. Это требуется для различного фасовочного оборудования на конвейерах и подобных устройствах.
С круговыми зубьями
Они имеют скругленные зубья, то есть с изгибом по радиусу. За счет этого они могут работать с увеличенной нагрузкой. Такие колеса обладают плавным ходом. Их недостаток в снижении КПД, зато они очень тихие.
Производство данных шестерен сложное, поэтому они применяются не так часто. Их стоимость выше, чем нескольких упрощенных зубчаток, решающих аналогичную задачу. Их применяют, если требуется добиться максимальной компактности и при этом низкого уровня шума готового механизма.
Конические
Такие шестерни могут передавать крутящий момент на валы, которые располагаются друг к другу под прямым углом. Их зубья могут быть прямыми, косыми, скругленными или тангенциальными. Это один из самых распространенных элементов. Его можно встретить в конструкции редукторов и дифференциала автомобиля. Такие зубчатки имеют зубья обычно только по наружной окружности. Коническая зубчатая пара состоит из элементов с разным количеством зубьев. В результате этого на таком узле происходит повышение или понижение передаточного числа.
Зубчатые рейки
Это элемент реечной передачи. Он представляет собой рейку с зубьями, предназначенную для стыковки с ответными шестернями. Такая пара позволяет превращать вращательное движение в поступательное, или же наоборот. Рейки бывают различной длины. Нередко они работают в сочетании с секторной зубчаткой, что обеспечивает выполнение возвратно-поступательных движений.
Звездочки
Это шестерни, предназначенные для соединения с роликовой цепью. Они применяются для передачи крутящего момента между элементами расположенными на расстоянии друг от друга. За счет разницы диаметра звездочек, и разного числа зубцов, при вращении такой пары происходит увеличение или понижение передаточного числа на ведомом элементе.
Также возможна работа звездочек посредством установки зубчатого ремня из резины или полимера Такое техническое решение сопровождает отсутствием необходимости выполнения смазки, а также понижением шума при оборотах. Однако ремень склонен к проскальзыванию под нагрузкой, так как способен растягиваться.
Корончатые
Это достаточно редкие шестерни, которые сложно спутать с любыми другими. Они отличаются тем, что зубья на них располагаются сбоку. За счет этого внешне они похожи на корону. Их применяют в сцепки с прямозубым колесом. Они не рассчитаны на большие нагрузки, и используются сугубо в силу необходимости корректировки формы механизма передачи, в случае необходимости его размещения в стесненный корпус или короб. Увидеть такие шестеренки можно в старинных башенных часах.