что такое текстовая задача

Сообщение на тему: «Текстовые задачи»

что такое текстовая задача. Смотреть фото что такое текстовая задача. Смотреть картинку что такое текстовая задача. Картинка про что такое текстовая задача. Фото что такое текстовая задача

Сообщение на тему : «Текстовые задачи».

Содержит в себе определения текстовая задача, структуру задачи, состав задачи из 4 элементов по методике Л.М. Фридман, классификацию текстовых задач

что такое текстовая задача. Смотреть фото что такое текстовая задача. Смотреть картинку что такое текстовая задача. Картинка про что такое текстовая задача. Фото что такое текстовая задача

Содержимое разработки

что такое текстовая задача. Смотреть фото что такое текстовая задача. Смотреть картинку что такое текстовая задача. Картинка про что такое текстовая задача. Фото что такое текстовая задача

Министерство образования, науки и молодёжной политики

Государственное бюджетное профессиональное образовательное учреждение Краснодарского края

«ЕЙСКИЙ ПОЛИПРОФИЛЬНЫЙ КОЛЛЕДЖ»

Сообщение на тему: «Текстовые задачи»

студентка Ш-21 группы

Текстовая задача – это описание некоторой ситуации на естественном языке, описывается некоторый процесс и требуется вычислить значение некоторых величин, характеризующих этот процесс, или установить отношение между ними.

Структура любой задачи содержит:

данные с их свойствами;

отношения между данными;

искомые и их свойства;

отношения между данными и искомыми.

указание на необходимость найти искомое.

Данные с их свойствами, отношение между ними, а также отношения между данными и искомыми будем называть условием задачи. Искомое и указание на необходимость его нахождения назовем требованием задачи.

Итак, задача – это система данных и искомых с их свойствами и отношениями и с указанием на необходимость найти искомое. Если данные и искомые, а также отношения между ними можно выразить математическим языком, то такую задачу будем называть математической.

Л.М. Фридман предлагает формализованное определение текстовой задачи. Согласно его подхода, всякая задача состоит из следующих 4 частей:

предметной области – совокупность объектов, о которых идет речь в задаче;

отношений, которые связывают объекты предметной области;

требования – это указание о цели решения задачи (то, что необходимо установить в результате решения);

оператора – совокупность действий, которые надо произвести над условиями задачи, чтобы выполнить её требование.

Условие задачи – та часть её формулировки, в которой указаны элементы предметной области и отношения между ними.

Элементы предметной области и отношения между ними можно разделить на известные (в условии задачи точно указаны их значения) и неизвестные (искомые (значения которых надо найти) и вспомогательные).

Структуру задачи можно представить в виде следующей схемы:

Классификация текстовых задач

Существуют различные классификации текстовых математических задач. Укажем некоторые из них.

Источник

Математика «Понятие текстовой задачи и ее основные элементы»

При обучении математике в школе используются текстовые задачи. Решение и составление задач способствуют развитию логического мышления, формированию некоторых математических умений (вычислительной деятельности, умения моделировать и др.), применению математических знаний в жизненных ситуациях.

Кроме того, каждая задача содержит в неявной форме некоторую систему зависимостей, которые дают возможность искать ответ на вопрос задачи, путь выполнения ее требования – решать задачу. Решить задачу – это значит через логически верную последовательность действий и операций, с имеющимися в задаче явно или косвенно числами, величинами, отношениями, выполнить требование задачи.

Термином «решение задачи» обозначают связанные между собой понятия:

— решением задачи называют результат, т.е. ответ на требование задачи;

— решением задачи называется процесс нахождения этого результата, т.е. вся деятельность человека, решающего задачу;

Существуют различные методы решения задач: арифметический, алгебраический, геометрический, логический, практический и др. В основе каждого метода лежат различные виды математических моделей, например:

— при арифметическом способе ответ на вопрос задачи находится в результате выполнения арифметических действий над числами;

— при алгебраическом методе решения задач составляются уравнения, неравенства, системы уравнений;

— при геометрическом – строятся диаграммы или графики;

— при решении задачи логическим методом значит найти ответ на требование задачи, как правило, не выполняя вычислений, а только используя логические рассуждения;

Итак, при решении и составлении текстовых задач важно научиться выделять условие и требование задачи. В начале обучения детям обычно предлагаются простые задачи (решаемые в одно действие), в которых сначала сформулировано условие, потом требование. При обсуждении текстовых задач дети учатся не только логично рассуждать, но и самостоятельно составлять задачи, называть объекты задачи, величины, их численные значения, связи между величинами.

1 Овчинникова М.В. Методика работы над текстовыми задачами в начальных классах (общие вопросы): К.: Пед. пресса, 2011. 18 с.

2 Тихонеко А.В. Обучение решению текстовых задач в начальной школе. М.: Академия, 2012. 39 с.

3 Демидова Т.Е. Теория и практика решения текстовых задач. М.: Академия, 2012. 30 с.

4 Провоторова Н.А. Методика решения задач в начальной школе. Воронеж: ВГПУ, 2016. 34 с.

5 Овчинникова М.В. Методика работы над текстовыми задачами в начальных классах (общие вопросы): К.: Пед. пресса, 2011. 18 с.

Источник

Понятие текстовой задачи по математике

В повседневной жизни люди постоянно сталкиваются с термином «задача» как на профессиональном, так и на бытовом уровне. Нам зачастую приходится решать те или иные проблемы, которые мы привыкли называть задачами. Проблема решения задач, математических и которые возникают перед человеком в бытовой или производственной деятельности, начали изучаться с давних пор, но на сегодняшний день нет общепринятого толкования самого понятия «задача». В общепринятом понимании под задачей имеется в виду некоторая ситуация, требующая исследования и необходимого решения человеком.

Определения текстовой задачи предлагают различные авторы:

1.Текстовая задача – есть описание некоторой ситуации на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между её компонентами или определить вид этого отношения (А.П. Тонких).

2. Текстовая задача – это сформулированный словами вопрос, ответ на который может быть получен с помощью арифметических действий» (М.И.Моро и А.М. Пышкало).

Самого такового определения текстовой задачи нет, есть только понятие причем, по словам Н.В.Метельского это понятие есть неопределенным. По его мнению, «задача – понятие неопределяемое и в самом широком смысле слова означает то, что требует исполнения, решения. Иногда под задачей понимают упражнение, которое выполняется, решается посредством умозаключения, вычисления и т.п. Последнее толкование термина «задача» ближе к понятию «задача в обучении», которую можно назвать дидактической задачей. Математическая задача в обучении … является также неопределяемым понятием, подчиненным понятию «дидактическая задача»».

Существуют некоторые виды задач, которые выделяет Т.Е. Демидов:

1)Коллективные и групповые задачи,

3) Задачи определенного круга людей.

Если глубоко рассмотреть текстовую задачу, то можно понять что это некая ситуация которая требует определенного решения.

Задача как цель, которая заданная в определённых условиях, так А.Н. Леонтьев определяет понятие текстовой задачи. Л.Л. Гурова определяет текстовую задачу как объект, мыслительной деятельности, который требует практических действий или ответа на теоретический вопрос путем нахождения условий, необходимых для нахождения связей между неизвестными и известными её элементами. А Л.М. Фридман находит связь между понятием «задача» и «проблемная ситуация».

Правильно будет выделить отдельный блок математических текстовых задач, для которых необходимо знать особые математические знания.

Демидова Т.Е. делит задачи на два блока:

1)научные (например, проблема Гольбаха, теорема Ферма и т.д.), при решении развевается математика и её приложения. Они характеризуют настоящие предметы (масса, длина, скорость и т.д.).

Математическая задача – это необходимость реализовать некоторую математическую деятельность, для которых условие уже указано.

По роли, которую играют учебные задачи, их, делят на:

1)репродуктивные (для решения такого вида задач необходимо знать

2)задачи с известным алгоритмом (это такой вид задач, для решения

которых необходимо проделать определённую последовательность действий, для

3)проблемные (это задачи, которые ориентируют учащихся, на решение какой либо проблемы, связанной с содержанием текста или определено речевым действием, которое необходимо выполнить или обратить внимание).

Задачи, в которых все объекты математические (вычислительные задания,

доказательство теорем и т.д.) принято называть математическими задачами.

Математические задачи называются текстовыми, если в них присутствует хотя бы один объект, который является реальным предметом.

Важнейшая особенно сть текстовых задач заключается в том, что в них не показывается, открыто, какое собственно действие необходимо выполнить для получения ответа на вопрос задачи.

В любой текстовой задаче можно выделить следующее:

1)Числовые значения, которые принято называть известными или данными (их следует быть не менее двух),

2)Некоторую систему функциональных зависимостей в неявном виде, взаимоотношения данных и искомых и данных между собой,

3)Вопрос или требование, на который нужно найти ответ.

Условие задачи называют числовые значения величин и имеющиеся между ними некие связи, то есть качественные и количественные характеристики предметов задачи и взаимоотношений между ними. В задаче, как правило, не одно условие, а несколько, которые называют элементарными. Вопрос в задаче может быть выражен как в повествовательной, так и в вопросительной форме, и их также как условий, может быть несколько. Значение величин, которые необходимо найти называют искомой величиной, а числовые величины искомых значений, называют неизвестными или искомыми.

Для того чтобы получить ответ на требование задачи, для этого необходимо ее решить. Решить задачу это значить найти взаимоотношения между данными, которые даны в условии задачи, и искомыми величинами, установить последовательность применение общих положений математики (формул, законов, правил, и так далее), выполнить определенные действия которые даны в задаче, применяя общее положение и получить ответ на требование задачи или доказать что его нет.

Источник

Модуль 1. ТЕКСТОВАЯ ЗАДАЧА И ПРОЦЕСС ЕЕ РЕШЕНИЯ

Семестр

Кроме различных понятий, предложений и доказательств в любом математическом курсе есть задачи. В обучении математике младших школьников преобладают такие, которые называют арифметическими, текстовыми, сюжетными. Эти задачи сформулированы на естественном языке (поэтому их называют текстовыми); в них обычно описывается количественная сторона каких-то явлений, событий (поэтому их часто называют арифметическими или сюжетными); они представляют собой задачи на разыскание искомого и сводятся к вычислению неизвестного значения некоторой величины (поэтому их иногда называют вычислительными).

В данном курсе мы будем применять термин «текстовые задачи», поскольку он чаще других используется в методике обучения математике младших школьников.

Решение текстовых задач при начальном обучении математике является средством формирования многих математических понятий, умений строить математические модели реальных явлений, а также средством развития мышления детей. Поэтому учителю надо знать не только различные методические подходы к обучению детей решению текстовых задач, но и как устроены такие задачи и уметь решать их различными методами и способами.

Структура текстовой задачи. Методы и способы решения текстовых задач

Опр.1. Текстовая задача – есть описание на естественном языке некоторого явления (ситуации, процесса) с требованием дать количественную характеристику какого-либо компонента этого явления, установить наличие или отсутствие некоторого отношения между компонентами или определить вид этого отношения.

Структура текстовой задачи состоит из утверждения и требования. Утверждения задачи называют условиями (или условием). В задаче обычно не одно условие, а несколько элементарных условий. Они представляют собой количественные и качественные характеристики объектов задачи и отношений между ними. Требований в задаче может быть несколько. Они могут быть как в вопросительной, так и утвердительной форме.

Условия и требования взаимосвязаны. Систему взаимосвязанных условий и требований называют высказывательной моделью задачи. Чтобы понять, какова структура задачи, надо выявить ее условия и требования, отбросив все лишнее, второстепенное, не влияющее на ее структуру. Иными словами, надо построить высказывательную модель задачи.

Пример. Рассмотрим задачу: «Две девочки одновременно побежали навстречу друг другу по спортивной дорожке, длина которой 420м. Когда они встретились, первая пробежала на 60м больше, чем вторая. С какой скоростью бежала каждая девочка, если они встретились через 30с?»

Условия задачи: 1) Две девочки бегут навстречу друг другу. 2) Движение они начали одновременно. 3) Расстояние, которое они пробежали – 420м.4) Одна девочка пробежала на 60м больше, чем другая. 5) Девочки встретились через 30с. 6) Скорость движения одной девочки больше скорости другой.

Требования задачи: 1) С какой скоростью бежала первая девочка. 2) С какой скоростью бежала вторая девочка.

По отношению между условиями и требованиями различают следующие виды задач.

Определенные задачи – в них условий столько, сколько необходимо и достаточно для выполнений требований (В букете 5 красных роз, а белых на 3 розы меньше. Сколько всего роз в букете?).

Недоопределенные задачи – в них условий недостаточно для получения ответа (Из зала вынесли сначала 12 стульев, потом еще 5. Сколько стульев осталось в зале?).

Переопределенные задачи – в них имеются лишние условия (Возле дома росло 5 яблонь, 2 вишни и 3 березы. Сколько фруктовых деревьев росло возле дома?).

Уточним смысл термина «решения задачи». Так сложилось, что этим термином обозначает разные понятия:

• результат, т.е. ответ на требование задачи;

• процесс нахождения этого результата: а) как метод нахождения результата; б) как последовательность тех действий, который выполняет решающий.

Основными методами решения текстовых задач являются арифметический и алгебраический.

Решить задачу арифметическим методом – это значит найти ответ на требование задачи посредством выполнения арифметических действий над числами. Одну и туже задачу можно решить различными арифметическими методами.

Пример. Решим различными арифметическими способами задачу: «Из ткани сшили 3 платья, расходуя на каждое по 4м ткани. Сколько кофт можно сшить из этой ткани, если расходовать на одну кофту 2м?»

• 43=12 (м) – столько было ткани

• 122=6 (к) – сшили из 12м ткани

• 42=2 (раза) – больше ткани идет на платье, чем на кофту

• 32=6 (к) – можно сшить из этой ткани

Решить задачу алгебраическим методом – это значит найти ответ на требование задачи, составив и решив уравнение или систему уравнений. Если для одной и той же задачи можно составить различные уравнения (системы уравнений), то это означает, что данную задачу можно решить различными алгебраическими способами.

Пример. Решим различными алгебраическими способами задачу: «Свитер, шапку и шарф связали из 1 кг 200г шерсти. На шарф потребовалось на 100г шерсти больше, чем шапку, и на 400г меньше, чем на свитер. Сколько шерсти израсходовали на каждую вещь?»

Обозначим через х(г) массу шерсти, израсходованную на шапку. Тогда на шарф будет израсходовано (х+100)г, а на свитер ((х+100)+400)г. Так как на все три вещи израсходовано 1200г, то можно составить уравнение: х+(х+100)+((х+100)+400)=1200. Решив данное уравнение, получим х=200, т.е. если на шапку ушло 200г шерсти, то на шарф – 200+100=300(г), а на свитер (200+100)+400=700(г).

Обозначим через х(г) массу шерсти, израсходованную на шарф. Тогда на шапку будет израсходовано (х-100)г, а на свитер (х+400)г. Так как на все три вещи израсходовано 1200г, то можно составить уравнение: х+(х-100)+(х+400)=1200. Решив данное уравнение, получим х=300, т.е. если на шарф ушло 300г шерсти, то на шапку – 300-100=200(г), а на свитер 300+400=700(г).

Обозначим через х(г) массу шерсти, израсходованную на свитер. Тогда на шарф будет израсходовано (х-400)г, а на шапку ((х-400)-100)г. Так как на три вещи израсходовано 1200г, то можно составить уравнение: х+(х-400)+((х-400)-100)=1200. Решив данное уравнение, получим х=700(г), т.е. если на свитер ушло 700г шерсти, то на шарф – (700-400=300)г, а на шапку ((700-400)-100=200)г.

Этапы решения текстовой задачи и приемы их выполнения

Деятельность по решению задачи арифметическим методом включает следующие основные этапы: анализ задачи; поиск и составление плана решения задачи; осуществление плана решения задачи; проверка решения задачи.

Название этапаЦель этапаПриемы выполнения этапа
Анализ задачиПонять в целом ситуацию, описанную в задаче; Выделить условия и требования; Назвать известные и искомые объекты, выделить все отношения (зависимости) между ними• Задать специальные вопросы и ответить на них • Перефразировка текста задачи • Построение вспомогательной модели задачи
Поиск и составление плана решения задачиУстановить связь между данными и искомыми объектами, наметить последовательность действий• Разбор задачи по тексту (от условия к требованию; от требования к условию) • Разбор по вспомогательной модели
Осуществление плана решения задачиНайти ответ на требование задачи, выполнив все действия в соответствии с планом• Запись решения по действиям (с пояснением; без пояснения; с вопросами) • Запись решения в виде выражения
Проверка решения задачиУстановить правильность или ошибочность выполненного решения• Установление соответствия между результатом и условиями задачи • Решение задачи другим способом

Рассмотрим подробнее приемы выполнения этапов решения задачи.

Анализ задачи.

• О чем задача, т.е. о каком процессе (явлении, ситуации) идет речь в задаче, какими величинами характеризуется этот процесс?

• Что в задаче известно о названных величинах?

• Что неизвестно о названных величинах?

• Что требуется найти в задаче?

Пример. Проведем анализ следующей задачи: «По дороге в одном и том же направлении идут два мальчика. Вначале расстояние между ними было 2км, но так как скорость идущего впереди мальчика 4км/ч, а скорость второго 5км/ч, то второй догоняет первого. С начала движения и до того, как второй мальчик догонит первого, между ними бегает собака со скоростью 8км/ч. От идущего позади мальчика она бежит к идущему впереди, добежав, возвращается обратно и так бегает до тех пор, пока мальчики не окажутся рядом. Какое расстояние пробежит за все это время собака?»

О чем задача? Задача о движении двух мальчиков и собаки. Она характеризуется для каждого участника движения скоростью, временем и пройденным расстоянием.

Что известно о названных величинах? В задаче известно, что: а) мальчики идут в одном направлении; б) до начала движения расстояние между мальчиками было 2км; в) скорость первого мальчика (идущего впереди) 4 км/ч; г) скорость второго мальчика (идущего позади) 5км/ч; д) скорость, с которой бежит собака, 8км/ч; е) время движения собаки – это время, за которое второй мальчик догонит первого.

Что неизвестно о названных величинах? В задаче неизвестно: за какое время второй мальчик догонит первого; с какой скоростью происходит сближение мальчиков; расстояние, которое пробежала собака.

Что требуется найти в задаче? В задаче требуется найти, какое расстояние пробежит собака за время, за которое второй мальчик догонит первого.

Второй прием – Перефразировка текста задачи.

Данный прием заключается в замене описания некоторой ситуации в задаче другим, сохраняющим все отношения, связи, качественные характеристики, но более явно их выражающим. Это достигается в результате отбрасывания несущественной, излишней информации, замены описания некоторых понятий соответствующими терминами и, наоборот; преобразование текста задачи в форму, удобную для поиска плана решения. Особенно эффективно использование данного приема в сочетании с разбиением текста на смысловые части. Результатом перефразировки должно быть выделение основных ситуаций.

Пример. Проведем перефразировку теста рассмотренной выше задачи: «1) Скорость одного мальчика 4км/ч, а скорость догоняющего его второго мальчика 5км/ч. 2) Расстояние, на которое мальчики сблизились 2км. 3) Время движения мальчиков и собаки – это время, за которое второй мальчик догонит первого. 4) Скорость собаки 8км/ч. Требуется определить расстояние, которое пробежала собака».

Третий прием – Построение вспомогательной модели задачи.

Вспомогательная модель задачи служит формой фиксации анализа текстовой задачи и является основным средством поиска плана ее решения. В качестве вспомогательной модели задачи выступают: рисунок или схематический рисунок; чертеж или схематический чертеж; таблица. Чаще всего используют схематический чертеж или таблицу.

После построения вспомогательной модели необходимо проверить:

• Все ли объекты задачи и их величины показаны на модели.

• Все ли отношения между ними отражены.

• Все ли числовые данные приведены.

• Есть ли вопрос (требование) и правильно ли он указывает искомое?

Пример. Построим вспомогательную модель рассмотренной выше задачи. В данной задаче вспомогательной моделью целесообразно выбрать таблицу.

Участники движенияСкоростьВремяРасстояние
Первый мальчик4км/чОдинаковое
Второй мальчик5км/чНа 2 км больше 1-го мальчика
Собака8км/ч?км

Поиск и составление плана решения задачи.

Первый прием – Разбор задачи по тексту.

Разбор задачи проводится виде цепочки рассуждений, которая может начинаться как от данных задачи, так и от ее вопросов.

При разборе задачи от данных к вопросу в тексте задачи выделяется два данных и на основе знания связи между ними (полученные при анализе задачи) определяется, какое неизвестное может быть найдено по этим данным, и с помощью какого арифметического действия. Затем, считая это неизвестное данным, вновь выделяется два взаимосвязанных данных и определяется неизвестное, которое может быть найдено по ним и с помощью какого действия и т.д. Данный процесс продолжается до тех пор, пока не будет выяснено, какое действие приводит к получению искомого в задаче объекта.

Пример. Решим задачу, используя данный прием: «На поезде, скорость которого 56км/ч, турист проехал 6ч. После этого ему осталось проехать в 4 раза больше, чем проехал. Каков весь путь туриста?»

Разбор текста задачи от данных к вопросу:

Известно, что 6ч турист проехал на поезде, который шел со скоростью 56км/ч. По этим данным можно узнать расстояние, которое проехал турист за 6ч – для этого нужно скорость умножить на время (566=336). Зная пройденную часть расстояния и то, что оставшееся расстояние в 4 раза больше, можно найти, чему оно равно (3664=1344). Зная, сколько километров турист проехал и сколько ему осталось ехать. Можем найти весь путь, выполнив сложение найденных расстояний (336+1344=1680). Итак, первым действием будем находить расстояние, которое турист проехал на поезде, вторым действием – расстояние, которое ему осталось проехать и третьим – весь путь туриста.

При разборе задачи от вопроса к данным нужно обратить внимание на вопрос задачи и установить (на основе информации, полученной при анализе задачи), что достаточно узнать для ответа на этот вопрос. Для этого нужно обратиться к условиям и выяснить, есть ли для этого необходимые данные. Если таких данных нет или есть только одно данное, то установить, что нужно знать, что бы найти недостающее данное (недостающие данные), и т.д. Потом составляется план решения.

Пример. Решим задачу, описанную в предыдущем примере, используя данный прием.

Разбор текста задачи от вопроса к данным:

В задаче требуется узнать весь путь туриста, который состоит из двух частей. Значит, чтобы найти ответ на вопрос задачи достаточно знать, сколько километров турист проехал, и сколько километров ему осталось проехать. И то и другое неизвестно. Чтобы найти пройденный путь, достаточно знать время и скорость, с которой ехал турист – это в задаче известно. Умножив скорость на время, узнаем путь, который турист проехал (566=336). Оставшийся путь можно найти, увеличив пройденный путь в 4 раза (3364=1344). Итак, вначале можно узнать пройденный путь, затем оставшийся, после чего сложением найти весь путь туриста.

Второй прием – Поиск плана решения задачи по вспомогательной модели.

Пример. Покажем, как можно осуществить поиск плана решения задачи о движении мальчиков и собаки (см. выше) по вспомогательной модели (таблице).

Из таблицы видно, что для того, чтобы найти расстояние, которое пробежала собака достаточно знать ее скорость и время движения. Скорость известна, а время движения собаки такое же, как у мальчиков. Чтобы найти это время, нужно знать какое расстояние было между мальчиками и скорость их сближения. Расстояние известно, а скорость сближения мальчиков можно найти, так как скорость каждого известна. Скорость сближения мальчиков найдем разностью, так как они двигаются в одном направлении (5-4=1). Затем узнаем, сколько времени понадобилось, чтобы второй мальчик догнал первого, для этого расстояние между мальчиками разделим на скорость их сближения (21=2). И наконец, мы можем узнать расстояние, которое пробежала собака за это время, для этого ее скорость умножим на время движения собаки (82=16). Итак, вначале найдем скорость движения мальчиков, затем время движения всех участников (оно одинаковое), а потом расстояние, которое пробежала собака.

Осуществление плана решения задачи.

Первый прием – Запись плана решения задачи по действиям (с пояснениями, без пояснений, с вопросами).

Пример. Приведем различные приемы записи решения задачи про движение туриста.

• 566=336(км) – турист проехал за 6ч

• 3364=1344(км) – осталось проехать туристу

• 336+1344=1680(км) – весть путь туриста

• Сколько километров проехал турист на поезде? 566=336(км)

• Сколько километров осталось проехать туристу? 3364=1344(км)

• Каков весь путь туриста? 336+1344=1680(км)

Второй прием – Запись решения задачи в виде выражения.

Запись решения в этой форме осуществляется поэтапно. Сначала записываются отдельные шаги в соответствии с планом, затем составляется выражение и находится его значение. Так как обычно это значение записывают, поставив после числового выражения знак равенства, то запись становится числовым равенством, в левой части которого – выражение, составленное по условию задачи, а в правой – его значение, которое позволяет сделать вывод о выполнении требований задачи.

Пример. Рассмотрим предыдущую задачу.

• 566 (км) – турист проехал за 6ч

• 5664 (км) – осталось проехать туристу

• 566+5664 =1680(км) – весть путь туриста

Пояснения к действиям можно не записывать, а давать их в устной форме, тогда запись решения задачи примет вид: 566+5664 =1680(км).

Проверка решения задачи.

Прием первый – Установление соответствия между результатом и условиями задачи.

Для этого найденный результат вводится в текст задачи и на основе рассуждений устанавливается, не возникает ли противоречия.

Пример. Проверим, используя данный прием, правильность решения задачи о движении туриста.

Мы установили, что турист должен был проехать 180км. Пусть этот результат будет одним из данных задачи. Как известно, за 6ч турист проедет 336км (56=336) и ему останется проехать 1680-336=1344(км). Согласно условию задачи это расстояние должно быть в 4 раза больше того, что он проехал на поезде. Разделив 1344 на 336, получим 4. Следовательно, противоречий с условиями задачи не возникает. Значит, задача решена верно.

Второй прием – Решение задачи другим способом.

Пусть при решении каким-то способом получен некоторый результат. Если решение задачи другим способом приводит к тому же результату, то можно сделать вывод о том, что задача решена верно. Например, если задача решена арифметическим методом, то правильность ее решения можно проверить, решив задачу алгебраическим методом.

Не следует думать, что без проверки нет решения текстовой задачи. Правильность ее решения обеспечивается, прежде всего, четкими и логичными рассуждениями на всех других этапах решения задачи.

Решение задач «на части»

Рассматриваемые в таких задачах величины состоят из частей. В некоторых из них части представлены явно, в других эти части надо суметь выделить, приняв подходящую величину за 1 часть и определить, из каких таких частей состоят другие величины, о которых идет речь в задаче.

При решении таких задач арифметическим методом чаще всего используют вспомогательные модели, выполненные с помощью отрезков или прямоугольников.

Пример. Решим задачу: «Для варки варенья из вишни на 2 части ягод берут 3 части сахара. Сколько сахара надо взять на 10кг ягод?»

Решение: В задаче речь идет о массе ягод и массе сахара, необходимых для варки варенья. Известно, что всего ягод 10кг и что на две части ягод надо три части сахара. Требуется найти массу сахара, чтобы сварить варенье из 10кг ягод.

Вспомогательная модель будет иметь вид:

По условию задачи 10кг ягод составляют 2 части, следовательно, на 1 часть приходится 102=5(кг). Сахара надо взять три таких части, получаем, что 53=15(кг).

В рассмотренной выше задаче части представлены явно. Рассмотрим пример задачи, в которой части нужно суметь выделить.

Пример. Решим задачу: «В двух кусках ткани одинаковое количество материи. После того, как от одного куска отрезали 18м, а от другого 25м, в первом куске осталось вдвое больше ткани, чем во втором. Сколько метров ткани было в каждом куске первоначально?»

Решение: В задаче речь идет о двух кусках ткани одинаковой длины. От первого отрезали 18м, от второго 25м. После этого в первом куске осталось вдвое больше ткани, чем во втором. Требуется найти первоначальную длину кусков ткани.

Вспомогательная модель будет иметь вид:

Если количество ткани, которое осталось во втором куске – это 1 часть, то количество оставшейся ткани в первом куске – это 2 таких части. По чертежу видно, что на 1 часть приходится количество ткани, которое легко найти – 25-18=7(м). Тогда в каждом куске было 25+7=32(м).

Решение задач на движение

Задачи на движение решаются на основании зависимости между тремя величинами, характеризующими движение: скоростью, расстоянием и временем. Во всех случаях речь идет о равномерном прямолинейном движении.

Итак, движение, рассматриваемое в текстовых задачах, характеризуют три величины: пройденный путь (расстояние) (s), скорость (v), время (t). Основное отношение (зависимость) между ними выражается формулой: s=vt.

Рассмотрим особенности решения основных видов задач на движение.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *