Что такое яркость изображения
Что такое яркость изображения
Что такое яркость, контрастность и насыщенность и с чем их едят
Все прекрасно знаете, что фотоаппараты не идеальны и не всегда точно подбирают цвет (свет) на фото. Бывает, вспышка не успевает зарядиться и мы наблюдаем практически черный квадрат Малевича, бывает она сработает чересчур сильно и мы наблюдаем белый квадрат неизвестного художника с красными точками посередине (глазенки хомячка), а бывает что мы пытаемся не зависеть от вспышки, пробуем снять без нее, а фото получается желтовато-коричневатого мутного оттенка. Все это с легкость можно вылечить средствами Photoshop (безусловно, в разумных пределах! Конечно же, полностью черный или полностью засвеченный кадр восстановить не удастся ).
Как правильно менять яркость, контрастность и насыщенность
Давайте начнем сначала с некратких, а затем кратких определений, чтобы понимать что же мы с вами меняем.
Что нам говорят по этой теме словари:
Яркость — световая характеристика тел. Отношение силы света, излучаемого поверхностью, к площади ее проекции на плоскости, перпендикулярной оси наблюдения.
Контрастность — различимость предмета наблюдения от окружающего его фона (монохроматическое излучение); цветовая контрастность — разновидность оптической контрастности, связанная с разницей цветовых оттенков.
Насыщенность — в физическом плане насыщенность цвета определяется характером распределения излучения в спектре видимого света.
Гхм… Неудобоваримые термины… Попробую сформулировать попроще и касательно данной темы:
Яркость — количество белого цвета на вашем фото. Чем выше вы ставите яркость, тем светлее становится кадр.
Контрастность — разница между разными, расположенными рядом цветами. Чем выше контрастность, тем более резко мы наблюдаем переход от одного цвета к другому (иногда контрастность срабатывает как повышение резкости).
Насыщенность — насколько сочно и ярко у вас выглядит тот или иной цвет. Можно увеличивать ее в нескромных пределах — тогда фото начинает даже «резать» глаз.
Можно, конечно, расписать по пунктам каждую из этих характеристик, но это было бы неправильно. Правильно комплексно менять все три настройки кадра. Как? Сейчас разберем…
Возьмем для рассмотрения вот такое вот темное, слабоконтрастное фото…
Команды эти прячутся в меню «Изображение», далее «Коррекция», затем «Яркость / Контрастность» и «Цветой тон / Насыщенность»:
При нажатии кнопки «Яркость / Контрастность» мы наблюдаем такое вот окошко:
При выборе «Цветой фон / Насыщенность» вот такое:
Для начала открываем «Яркость / Контрастность» и спокойно и умиротворенно двигаем оба ползунка вправо до требуемого значения яркости и контраста (все это делается чисто интуитивным образом и в каждом случае по-своему!). Не следует выставлять всегда точно такие же значения как на этом вот кадре:
Мне вот показалось что сначала нужно выставить яркость на +120, а контрастность на +30. Но всем заметно что цвета чересчур яркие и ненатуральные. Хорошо, что мы знаем где находится меню «Цветовой фон / Насыщенность», которая нам поможет это исправить:
Вроде, если еще добавить 20 единиц яркости и 10 контрастности станет еще лучше.
Результат давайте посмотрим в сравнении:
Автор: Екатерина Гончарова
Добавить комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.
Что такое яркость изображения
Часто в компьютерной графике возникает задача обработки изображений. Обработка, как правило, заключается в наложении на изображение каких-либо эффектов – это размытие, резкость, деформация, шум и т. д., а также в регулировке уровня яркости и контраста.
2.3.1. Яркость и контраст
Яркость и контраст являются субъективными характеристиками изображения, воспринимаемыми человеком.
Яркость представляет собой характеристику, определяющую то, на сколько сильно цвета пикселей отличаются от чёрного цвета. Например, если оцифрованная фотография сделана в солнечную погоду, то ее яркость будет значительной. С другой стороны, если фотография сделана вечером или ночью, то её яркость будет невелика.
Контраст представляет собой характеристику того, насколько большой разброс имеют цвета пикселей изображения. Чем больший разброс имеют значения цветов пикселей, тем больший контраст имеет изображение.
По аналогии с терминами теории вероятностей можно отметить, что яркость представляет собой как бы математическое ожидание значений выборки, а контраст – дисперсию значений выборки.
Яркость и контраст могут рассматриваться не только для всего изображения, но и для отдельных фрагментов. Таким образом, возникают понятия локальной яркости и локального контраста.
Часто требуется изменить яркость или контраст изображения. Рассмотрим функцию, областью определения и значений которой являются значения цветовых компонент в модели RGB. Аргументом функции является цвет пикселя исходного изображения. Значение функции представляет собой цвет пикселя обработанного изображения. Для изменения яркости/контраста функция применяется для каждого пикселя изображения.
Для нормализации выходных значений функции (они должны принадлежать отрезку [0, 1], как для каждого компонента модели RGB) используется так называемая арифметика с насыщением. В арифметике с насыщением при возникновении переполнений или заёмов фиксируется наибольшее представимое или наименьшее представимое значения соответственно. Например, если в результате преобразования оказывается, что значение какого-либо компонента модели RGB меньше 0, то берётся значение, равное 0. На практике же каждый элемент матрицы изображения с 16777216 цветами представляет собой 24-битное значение, где каждый компонент модели RGB представлен 8-ю битами. Поэтому вместо интервала [0, 1] используется интервал [0, 255].
Рис. 2.12. Графики яркости
Поскольку используется арифметика с насыщением, то при установке определённой яркости изображения либо оно полностью окажется засвеченным, либо полностью затемнённым.
Рис. 2.13. Графики контрастности
Комбинации наклона и сдвига прямой позволяют одновременно изменять и яркость, и контраст изображения. Например, на рис. 2.14 представлен график функции, усиливающей контраст и увеличивающей яркость изображения.
Рис. 2.14. Увеличение яркости и контрастности
Преобразование яркости/контраста может быть применено и к отдельным компонентам модели RGB, например к компоненту красного цвета. Тогда яркость/контраст будут изменяться только для красного компонента, а для других компонент они останутся неизменными. Более того, можно задавать различные преобразования яркости/контраста одновременно для каждого компонента модели RGB.
Яркость и контраст изображения
Отношение яркости самого яркого участка кадра к яркости самого темного называется отношением контраста. Среднее отношение контраста при съемках на открытой площадке составляет 150:1, но может достигать и 1000:1. Отношение контраста при съемках на улице и в павильоне может меняться от 20:1 до 1000:1, а видеокамера способна снять без искажений яркости только те сцены, где отношение контраста не превышает 32:1. Сигнал на выходе камеры меняется от максимального (100%) при полностью открытой диафрагме до уровня черного (3,125%) при минимальном отверстии диафрагмы. Это происходит за пять делений переключателя диафрагмы и соответствует изменению светового потока через объектив в 32 раза. Можно записывать сцены с большими диапазонами контраста, сжимая их за счет нелинейной характеристики передачи канала преобразования света в электрический сигнал.
Яркость и контраст изображения при съемке и просмотре
Контрастность изображения
Яркость изображения
Большинство нарушений яркостной структуры изображения происходит в ярких областях изображения, таких, как окна, небо и т. п. Но их влияние на практике будет зависеть от того, насколько важна для данного кадра тонкость в передаче тонов. Потеря детали белого костюма может быть замечена, но воспринята как режиссерский прием, подчеркивающий, насколько жарок этот солнечный день. Во время съемки на стадионе, где половина поля находится в глубокой тени от трибуны, а другая залита ярким солнцем, возникает масса проблем с экспозицией при переходе игры с одной части поля на другую. Деталь на темной части может пропасть, а на светлой она будет «выгорать».
Нарушение яркостной структуры изображения
Диапазон контраста
Часто экспозицию регулируют таким образом, чтобы диапазон контраста сцены мог быть без искажений воспроизведен после записи. В этом случае стремятся сохранить все различия тонов освещения при неизменном соотношение яркостей объектов. При таком подходе правильной будет та экспозиция, при которой воспроизводятся детали, как находящиеся в тени, так и ярко освещенные. К тому если в этом кадре имеется лицо, то нужно будет установить телесные тона на уровне 70-75% от пика белого (величина разброса может быть другой в зависимости от страны и цвета кожи; Подробнее >>>).
С другой стороны, в программе могут потребоваться образы, создающие определенное впечатление. Здесь «правильной» будет не та экспозиция, которая точно передает все тона образа, а та, при которой будет создано нужное настроение. Здесь выбор экспозиции зависит от того, каким будет ограниченный набор тонов, создающих атмосферу, соответствующую снимаемой сцене.
Специально нарушен контраст изображения
Яркость и контраст изображения — Глазом
Глаз воспринимает градации яркости путем сравнения. То, насколько один объект отличим от другого, зависит от соотношения видимых яркостей. Глаз начинает различать два объекта независимо от их яркости, когда различие по яркости достигает 8 %. Количество света, попадающего в глаз, регулируется радужной оболочкой. Светочувствительные элементы глаза — палочки (для слабого света) и колбочки (для нормальных условий освещения). При каком — либо постоянном размере зрачка обычный глаз способен воспринимать изображения с диапазоном контраста до 100:1. Но следует иметь в виду, что визуальное восприятие определяется не только глазом, но и мозгом. Глаз быстро адаптируется к изменяющимся условиям освещения, а мозг интерпретирует это так, как будто мы видим сцену с очень широким диапазоном контраста (порядка 500:1), и причем с первого взгляда.
Яркость и контраст изображения — Объективом
Апертурой объектива называется отверстие, через которое в него поступает свет. Её максимальный размер ограничен конструкцией объектива. Регулируя отверстие в диафрагме (т. е. апертуру), мы меняем количество света, поступающего на ПЗС-матрицы. Апертура (число f) определяется отношением фокусного расстояния объектива к диаметру эффективной апертуры, указывает на количество света, проходящего через объектив, и является средством управления экспозицией. При установке диафрагмы на f2 для объектива с фокусным расстоянием 50 мм мы будем иметь эффективную апертуру в 25 мм. Закрывая диафрагму до f4, мы уменьшим количество света, проходящего через объектив, вдвое. При раскрывании диафрагмы до f1,4 количество проходящего света увеличивается. Объективы разных конструкций могут иметь разную конфигурацию элементов и линзы из разного стекла. Из-за этого при одинаковых установках диафрагмы они будут пропускать разное количество света. Объективы характеризуются ещё числом Т. Оно вычисляется по формуле, учитывающей количество пропускаемого света, и объективы с одинаковым Т будут давать на мишени изображение одинаковой яркости.
Свет и цвет: основы основ
Мы окружены
Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение — это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).
Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.
На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр. Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет — всего лишь звено одной очень длинной электромагнитной волны.
От света к цвету и обратно
Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет — луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) — это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.
Рисунок 2 – Прохождение луча солнечного света через призму.
Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.
Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.
Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).
Проверим как это работает на практике. Возьмем 3 источника света (прожектора) — красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.
Рисунок 3 — Результат наложения красного, зеленого и синего цветов.
Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный — пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света — там мрак, там всё становится черным. Пример тому — иллюстрация 4.
Рисунок 4 – Отсутствие светового излучения
Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.
Рисунки 5 и 6– Зависимость параметров цвета от источника излучения
Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).
– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.
– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии — нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный — алый — бордовый — бурый — черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».
– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный — малиновый — розовый — бледно-розовый — белый.
– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.
Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).
Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.
Рисунок 7 – Палитра цветов Adobe Photoshop
Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% — это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) — это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 — это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах, в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.
Цвет объектов
Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.
Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет. А когда объект отражает почти весь падающий свет, он принимает белый цвет. Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света, которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря — физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.
Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.
— Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.
— Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.
— И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.
Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).
Рисунок 8 – Отражение зеленой волны спектра
Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.
Рисунок 9 – Отражение желтой волны спектра
Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.
Рисунок 10 – Отражение всех волн спектра
Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.
В следующей статье речь пойдет о новой характеристике цвета — цветовой температуре.