Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.
Нарисуем стандартный треугольник и запишем теорему формулой:
Формула теоремы синусов:
Докажем теорему с помощью формулы площади треугольника через синус его угла.
Из этой формулы мы получаем два соотношения:
Из этих двух соотношений получаем:
Теорема синусов для треугольника доказана.
Эта теорема пригодится, чтобы найти:
Доказательство следствия из теоремы синусов
У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.
где R — радиус описанной около треугольника окружности.
Так образовались три формулы радиуса описанной окружности:
Основной смысл следствия из теоремы синусов заключен в этой формуле:
Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.
Для доказательства следствия теоремы синусов рассмотрим три случая.
1. Угол ∠А = α — острый в треугольнике АВС.
Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.
Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.
Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.
BA1 = 2R, где R — радиус окружности
Следовательно: R = α/2 sinα
Для острого треугольника с описанной окружностью теорема доказана.
2. Угол ∠А = α — тупой в треугольнике АВС.
Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.
Вспомним свойство вписанного в окружность четырёхугольника:
В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:
Следовательно: R = α/2 sinα
Для тупого треугольника с описанной окружностью теорема доказана.
Часто используемые тупые углы:
3. Угол ∠А = 90°.
В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.
Для прямоугольного треугольника с описанной окружностью теорема доказана.
Теорема о вписанном в окружность угле
Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.
Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.
Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.
∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.
Формула теоремы о вписанном угле:
Следствие 1 из теоремы о вписанном в окружность угле
Вписанные углы, опирающиеся на одну дугу, равны.
∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).
Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:
На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.
Следствие 2 из теоремы о вписанном в окружность угле
Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.
Следствие 3 из теоремы о вписанном в окружность угле
Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:
Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.
Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.
Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.
Следовательно: α + γ = 180°.
Следствие 4 из теоремы о вписанном в окружность угле
Синусы противоположных углов вписанного четырехугольника равны. То есть:
Примеры решения задач
Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.
Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.
Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.
В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:
Значит x = sin (4/5) ≈ 53,1°.
Ответ: угол составляет примерно 53,1°.
Запоминаем
Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.
>
Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:
Синус, косинус, тангенс в прямоугольном треугольнике
Гипотенузой называется та сторона треугольника, что лежит против угла в 90 градусов, две оставшиеся стороны называются катетами прямоугольного треугольника.
Подробнее про прямоугольный треугольник здесь.
Синусом угла в прямоугольном треугольнике называется отношение противолежащего катета к гипотенузе.
Косинусом угла в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе.
Тангенсом угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему.
Котангенсом угла в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.
Бывает (и на ЕГЭ, ГИА), что приходится иметь дело с косинусами, синусами и тангенсами внешних углов треугольника. Формулы приведения позволяют увидеть, что есть еще и вот такая связь между смежными углами (помимо того, что их сумма равна 180):
Смотрите подборку задач на применение указанных соотношений в статье «Прямоугольный треугольник. Вычисление длин и углов» часть I, часть II.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
ФормулаТеоремы Пифагора:
a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.
К полученному выражению прибавим и отнимем квадрат второго катета:
Но так как b = c * cos α, то
Эту формулу мы получили для катетов в прямоугольном треугольнике, но аналогичная связь между стороной а и косинусом противолежащего угла справедлива и для произвольного треугольника.
Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Формула теоремы косинусов:
В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:
В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0). Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).
cos 2 α + sin 2 α = 1 — основное тригонометрическое тождество.
Что и требовалось доказать.
Следствие из теоремы косинусов: теорему косинусов также можно использовать для определения косинуса угла треугольника:
Сформулируем еще одно доказательство теоремы косинусов.
Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:
Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:
Приравниваем правые части уравнений:
Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.
Определим стороны b и c:
Формулировка теоремы для каждой из сторон треугольника
Теорема косинусов справедлива для всех сторон треугольника, то есть:
Таким образом, теорема косинусов обобщает теорему Пифагора. Закон косинуса может быть использован для любого вида треугольника.
Описание формулы косинуса угла из теоремы косинусов
Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:
Определение угла с помощью косинуса
А теперь обратим внимание на углы.
Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).
Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.
Рассмотрение пределов изменения cos α и sin α
Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.
Примеры решения задач
При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.
Пример 1. Дан треугольник АВС. Найти длину СМ.
∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.
Этот вопрос мучает меня с того момента, как мы начали изучать тригонометрию. И спустя чуть больше года я нашел способ! Порядок действий: 1) Найти синус и косинус 15° 2) Найти синус и косинус 18° 3) Зная синусы и косинусы 15° и 18°, найти синус 3° (используя формулу синуса разности аргументов) 4) Зная синус 3°, найти синус 1° (используя формулу тройного угла) 5) Зная синус 1°, мы можем найти синус любого целого угла (используя формулы двойного, тройного и т.д. углов)
Начнем с треугольника ACM. Пусть AC = 1. Тогда: AM = 2, CM = √3.
Переходим к треугольнику AMB. Очевидно, что этот треугольник равнобедренный, значит: BM = AM = 2. Заканчиваем треугольником ABC. AC = 1, BC = MC + BM = 2 + √3. Мы знаем длины двух катетов, и необходимо найти гипотенузу. Искать будем по теореме Пифагора.
Нарисуем опять изначальный треугольник, только уже с известными сторонами.
Синус и косинус 15° успешно найдены!
Пункт 2. Найти синус и косинус 18°. Тут я ничего вам авторского показать не могу, так что можете посмотреть видео как выводить синус 18°, а косинус можно найти из основного тригонометрического тожества
Не смотря на то, что видео не на русском языке там должно быть все понятно, а я буду использовать уже готовые значения синуса и косинуса 18°.
Пункт 3. Найти синус 3°. Все вы знаете формулу синуса разности аргументов (я надеюсь).
В нашем случае α = 18°, а β = 15°. Говорить тут особо нечего, а просто писать и считать. Для удобства я буду использовать следующие значения синуса и косинуса 15°.
(это тоже самое, что я вывел в П.1)
Тут даже сводить к общему знаменателю не надо, поскольку он и так общий. Сначала умножаем, потом вычитаем и в конце получаем выражение, на которое смотреть страшно!
Но если чуть чуть поиграться с этим выражением, то мы получим конфеточку.
Пункт 4. Найти синус 1°. Будем использовать формулу синуса тройного угла
В нашем случае α = 1°. Получаем кубическое уравнение относительно sin1° в каноническом виде.
Для удобства сделаем две замены, тогда наше уравнение имеет следующий вид:
(косинус 3° находим по основному тригонометрическому тождеству)
Теперь задание самым бешеным математикам: избавиться от мнимой части (если извлечь кубические корни, то для х1 мнимая часть сокращается, а для х2 и х3 она сократится при умножении на i√3). И расставить корни в порядке убывания или возрастания, все равно sin1° будет посередине. Я делать этого не буду, т.к. это страшно и долго, и вообще моя задача показать сам процесс, а не выполнить его полностью.
Пункт 5. Находим синус любого целого угла по формулам синуса двойного, тройного и т.д. углов!
Если нашли ошибку или есть вопросы, то пишите в комментарии! А если хотите больше треша, то можете посмотреть два моих предыдущих поста про тригонометрию! (На первый пост не обращайте внимания, т.к. это была проверка как работает Пикабу!) P.s. давайте соберём 100 плюсиков:)
Наука | Научпоп
6K постов 68.6K подписчиков
Правила сообщества
ВНИМАНИЕ! В связи с новой волной пандемии и шумом вокруг вакцинации агрессивные антивакцинаторы банятся без предупреждения, а их особенно мракобесные комментарии — скрываются.
Основные условия публикации
— Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.
— Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.
— Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.
— Видеоматериалы должны иметь описание.
— Названия должны отражать суть исследования.
— Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.
Не принимаются к публикации
— Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.
— Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.
— Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.
— Оскорбления, выраженные лично пользователю или категории пользователей.
— Попытки использовать сообщество для рекламы.
— Многократные попытки публикации материалов, не удовлетворяющих правилам.
— Нарушение правил сайта в целом.
Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество пикабу.
На вид довольно просто. А что такое синус и зачем его искать?
Чё т мне кажется, что кому нужно что-то точнее брадиса или калькулятора на смарте, юзают всякие матлабы и тому подобные специализированные среды.
Мне по жизни хватало точности в уме представить синусоиду и в уме же отмерить(ну там 0.2-0.3 примерно).Я не математик, радиотехник.
Почитай про ряд Тейлора для тригонометрических функций. Не благодари.
А нафига мне синус 33 градусов? Мне надо синус угла в 33 градуса 7 минут 28 секунд. Долго считать будете?
Зачем этим заниматься? Какая практическая польза от этого?
Давайте соберём 100 плюсиков и найдём от них синус.
А таблица Брадиса чем не устраивает?
Приветствую, автор! Смею вас разочаровать, выразить синус угла, не кратного трём невозможно. Есть теорема, к сожалению, не могу вспомнить, чьё имя носит (мне казалось, имя Ванцеля), которая это утверждает. Разумеется есть доказательство. Поищите в интернете, формулировка точно была в Википедии, но без доказательства. А что касается разрешения уравнений третей степени в радикалах, то тут у вас и кроется подвох. Дело в том, что уравнение с тремя действительными корнями не разрешается в ВЕЩЕСТВЕННЫХ радикалах. Это неприводимый случай. Для его решения используется метод Виета, что по сути, не решает вашу задачу, а сводит ответ к тригонометрической форме (посмотрите 1 глава в книге Колосова «Теоремы и задачи алгебры, теории чисел и комбинаторики»). Именно по этой причине трисекция угла в общем виде не разрешима. И синус угла, не кратного трём, найти в вещественных радикалах невозможно. Что, кстати, не противоречит тому, что алгебраических чисел больше, чем чисел, выраженных в радикалах.
Смотрите, если AM = x, то AC = x sin a, MC = x cos a
Далее BM = x (равнобедренный треугольник), BC = x + x cos a
Именная карта банка для детей с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Основные тригонометрические функции
Пусть есть некоторый прямоугольный треугольник АBС, у которого∠С = 90°. Обозначим какой-нибудь его острый угол, например, ∠А, греческой буквой α. В треугольнике есть два катета. Тот из них, который, непосредственно является одной из сторон угла α, называют прилежащим катетом. Другой катет именуют противолежащим. Ещё одна сторона треугольника – это гипотенуза, для которой не надо уточнять, прилежащая она или противолежащая относительно острого угла:
Отношения этих трех сторон друг к другу имеют особое наименование.
Для обозначения этих трех величин (их именуют тригонометрическими функциями) используют сокращения sin, cos и tg. При этом после этого сокращения может писаться как обозначение угла греческой буквой, так и обычное обозначение с помощью больших латинских букв:
Задание. Найдите значения тригонометрических функций для∠А в ∆АBС, длины сторон которого указаны на рисунке:
Решение. Просто пользуемся определениями каждой функции:
Задание. Найдите величину тригонометрических функций угла∠В в ∆АBС, показанном на рисунке:
Решение. На первый взгляд кажется, что задание повторяет предыдущее, но это не так. В данном случае нам надо вычислять функции не для∠А, а для ∠В. Для него противолежащим катетом уже будет АС, а прилежащим – ВС. Тогда можно записать, что
Задание. В прямоугольном ∆АBС гипотенуза АB имеет длину 10, аsin∠A= 0,2. Найдите величину ВС.
Решение. Запишем синус как отношение двух сторон:
Задание. В прямоугольном ∆АBС АС = 8,cos∠A= 0,4. Какова длина гипотенузы АB?
Решение. Выразим известный нам косинус как отношение двух отрезков:
Принципиально важно то, что если в двух прямоугольных треугольниках острые углы одинаковы, то и значение их синусов, косинусов и тангенсов также будут одинаковы. Действительно, пусть у ∆АBС и ∆А1В1С1 одинаковы∠А и ∠А1, а ∠С и ∠С1 – прямые:
Тогда у них совпадает по два угла, а это означает, что ∆АBС и ∆А1В1С1 подобны. Из этого подобия вытекает пропорция:
Отсюда можно сделать вывод:
Другими словами, значение тригонометрической функции угла зависит только от величины угла (его градусной меры) и НЕ зависит от того, в каком прямоугольном треугольнике этот угол построен. Действительно, с помощью калькулятора или компьютера можно всегда посчитать синус для какого-то угла, если известна его величина в градусах.
Задание. Найдите тангенс угла, изображенного на рисунке:
Решение. Нам надо самостоятельно достроить угол до прямоугольного треугольника. Удобней всего просто построить вертикальную линию, длину которой будет удобно измерить с помощью клеточек. Например, можно сделать такое построение:
Тогда тангенс можно получить, поделив вертикальный отрезок (он здесь оказывается противолежащим катетом) на горизонтальный:
Заметим, что мы могли построить и треугольник с другими размерами, однако во всех случаях величина тангенса будет одной и той же:
Задание. Постройте такой угол, что его тангенс будет равен 1,5.
Решение. Если тангенс равен 1,5, то это означает, что противолежащий катет в 1,5 раза длиннее прилежащего катета треугольника. В 1,5 раза отличаются, например, числа 2 и 3. Значит, если мы построим треугольник с катетами 2 и 3, то мы получим необходимый нам угол:
Взаимосвязь между тригонометрическими функциями
Оказывается, что одну тригонометрическую функцию угла, например, синус, можно найти и все остальные функции, используя буквально две формулы. Для их вывода снова построим прямоугольный ∆АBС и обозначим его∠А как α:
Запишем для α все 3 тригонометрические функции:
Для вывода второй важной формулы возведем синус и косинус в квадрат, а потом сложим их:
В итоге у нас получилось так называемое основное тригонометрическое тождество:
Задание. Известно, что синус некоторого угла в прямоугольном треугольнике составляет 0,6. Найдите его косинус и тангенс.
Решение. Обозначим этот угол как α. По условию sin α = 0,6. С помощью основного тригонометрического тождества находим косинус:
имеет не одно, а два решения: 0,8 и (– 0,8). Однако понятно, что так как все длины в геометрии – это положительные числа, то и их отношение также должно быть положительным. Поэтому в прямоугольном треугольнике тригонометрические функции могут быть только положительными, и корень (– 0,8) можно отбросить.
Далее находим тангенс:
Задание. Известен косинус острого угла, который равен 7/25. Вычислите синус и тангенс угла.
Решение. Сначала определяем синус угла:
Задание. Известен тангенс острого угла, он составляет 15/8. Найдите синус и косинус угла.
Решение. Данная задача сложнее двух предыдущих, так как две известные нам тригонометрические формулы не позволяют сразу по тангенсу вычислить две другие функции. Сначала используем формулу, в которой тангенс вообще присутствует:
Мы смогли выразить синус через косинус. Теперь можно использовать и вторую формулу:
Теперь можно вычислить и синус:
Заметим важное обстоятельство – так как гипотенуза всегда длиннее катетов, то и синус с косинусом в прямоугольном треугольнике всегда меньше единицы. На тангенс же подобных ограничений нет.
Задание. В прямоугольном ∆АBС гипотенуза АB равна 20, а cos∠A= 0,8. Вычислите длину ВС.
Решение. Если бы нам был дан синус, мы могли бы сразу найти ВС, но нам известен косинус. Здесь можно предложить два алгоритма решения задачи. Первый метод заключается в том, что мы сначала находим синус, пользуясь тригонометрическими формулами:
Второй метод решения задачи заключается в том, что сначала с помощью косинуса найти неизвестный катет АС:
Тригонометрические функции стандартных углов
Итак, мы выяснили, что тригонометрические функции зависят от градусной меры угла. Попытаемся вычислить их для некоторых стандартных значений.
Начнем с угла в 30°. Построим прямоугольный ∆АBС с∠А = 30°:
Ещё из 7-ого класса нам известно, что в таком треугольнике гипотенуза вдвое длиннее, чем катет, лежащий напротив угла в 30°:
Далее можно найти и тангенс 30°:
Вернемся к рассматриваемому нами ∆АBС, в котором∠А = 30°. Ясно, что другой его острый угол, ∠В, будет составлять 90 – 30 = 60°:
Снова используем тот факт, что гипотенуза АB будет длиннее катета ВС в 2 раза:
Ещё один стандартный угол, для которого легко можно рассчитать значение его тригонометрических функций – это 45°. Рассмотрим прямоугольный ∆АBС, в котором один из острых углов составляет 45°. Тогда и другой острый угол должен также составлять 45°, ведь их сумма в прямоугольном треугольнике равна 90°:
Но если в треугольнике 2 угла одинаковы, то он – равнобедренный, то есть катеты АС и ВС равны:
Итак, в результате нам удалось получить 9 стандартных значений, которые можно представить в виде единой таблицы тригонометрических функций:
Задание. Составьте формулу для вычисления площади прямоугольного треугольника, если известен один из его катетов (он равенa) и острый угол, прилегающий к этому катету (он обозначается какα). Далее найдитеc помощью формулы площадь треугольника, если а = 5 и α = 45°.
Решение. Как известно, площадь прямоугольного треугольника рассчитывается по формуле:
Задание. В прямоугольном ∆АBС к гипотенузе ВС проведена высота АН. Отрезок НВ имеет длину 16. Известно, чтоsinα = 0,6. Какова длина СН?
Решение. Сначала, зная sinα, найдем сosα и tgα:
Теперь заметим, что на рисунке угол α – это не только ∠АBС. Действительно, в ∆АBС
Нам известен отрезок АН и tg∠САН, поэтому можно найти СН:
Поиск тангенса на квадратной решетке
Рассмотрим задание, которое часто встречается на экзаменах и вызывает большие затруднения. На рисунке показан угол, требуется высчитать его тангенс:
Ясно, что для нахождения тангенса надо построить какой-нибудь прямоугольный треугольник, однако проблема заключается в том, что обе стороны угла не являются ни горизонтальными, ни вертикальными линиями, а потому провести к ним перпендикуляр у многих не получается. Рассмотрим, как это делается.
Посмотрим на нижнюю линию. Она представляет собой поднимающуюся прямую, причем на каждые 2 клеточки, которые эта прямая проходит вправо, приходится подъем на 1 клеточку вверх.
Оказывается, что для построения перпендикуляра к ней необходимо от какой-нибудь ее точки вести наклонную прямую, у которой, наоборот, на каждые две клеточки подъема будет приходиться 1 клетка движения вбок, причем не вправо, а влево:
Теперь, чтобы найти тангенс, надо просто поделить длину красного отрезка (он здесь оказывается противолежащим катетом) на длину зеленого отрезка. Несложно заметить, что эти отрезки одинаковы, так как являются гипотенузами в двух равных прямоугольных ∆АBС и ∆CDF:
Естественно, что отношение одинаковых отрезков равно единице, поэтому и тангенс также равен единице. Заметим, что прямой угол можно было получить, проведя перпендикуляр к нижней линии в другой точке:
Более того, перпендикуляр можно провести и к верхней стороне угла. Она представляет собой линию, которая поднимается вправо, и на каждые три клетки движения вверх приходится одна клетка смещения вправо:
Соответственно, чтобы построить к ней перпендикуляр, надо от одной из ее точек начать двигаться вправо и вниз, причем на 3 клетки движения вбок будет приходиться только 1 клетка движения вниз:
Во всех этих случаях зеленые и красные отрезки одинаковы, а потому тангенс равен единице.
Объясним, почему для построения перпендикуляра надо использовать именно такой метод. Пусть на квадратной решетке начерчена прямая АС, к которой надо провести перпендикуляр. Построив горизонтальную (показана зеленым цветом) линию АB и вертикальную (показана красным) линию ВС, мы достоим ее до прямоугольного ∆АBС. Далее отложим от точки С уже вертикально отрезок CD, равный АB, а далее от D – горизонтальный отрезок, равный ВС:
Обозначим∠А как α, тогда ∠АСВ будет составлять 90° – α. Заметим, что ∆АBС и ∆СDF – равные, так как они прямоугольные и у них одинаковы катеты:
Теперь обратим внимание на три угла, вершины которых лежат в точке С. Это ∠АСВ, ∠FCD и ∠АСF. Они вместе образуют развернутый угол ВСD, то есть их сумма составляет 180°. Но ∠АСВ и ∠FCD мы уже выразили через величину α. Тогда можно вычислить и третий угол ∠АСF:
Получили, что отрезки АС и СF действительно перпендикулярны.
Задание. Найдите тангенс угла, показанного на рисунке:
Решение. Если попытаться провести прямую, перпендикулярную нижней стороне угла, то в результате этот перпендикуляр просто не пересечется со второй стороной:
Поэтому перпендикуляр следует проводить к верхней стороне:
Теперь осталось найти отношение длин красного (здесь это противолежащий катет) зеленого отрезка. Конечно, и длины можно найти по теореме Пифагора, однако есть и более простой метод. Возьмем в качестве единичного отрезок, который получается, если на квадратной решетке сделать два шага вбок и один вверх. Этот отрезок будет укладываться на красном катете ровно 3 раза, а на зеленом – ровно 2 раза, то есть прилежащий катет равен трем единичным отрезкам, а противолежащий – двум. Тогда их отношение составляет 3/2 = 1,5