какой момент называется рождение звезды

Как происходит рождение звёзд

Собственно говоря, рождение звёзд — это процесс формирования молекулярного облака в светило. Разумеется, это не происходит в один момент — раз и всё готово. Как и для всего во Вселенной, для этого требуются определённые условия и, конечно же, время.

Напомним, что по определению звезда — это огромный шар, состоящий преимущественно из водорода и гелия, который образуется в газо-пылевой среде под воздействием гравитационных сил.

Что считается моментом рождения звёзд?

Главный и важный этап в эволюции звёзд начинается с объединения молекул водорода в одно облако. А как известно, во всей Вселенной он является самым распространённым элементом (за ним следует гелий, который также участвует в звездообразовании).

Вот и получается молекулярное облако, которое часто называют звёздной колыбелью. В результате гравитационной неустойчивости начальная флуктуация плотности молекул увеличивается. Проще говоря, со временем увеличиваются случайные отклонения концентрации вещества под силами гравитации.

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды Молекулярное облако

А так как космическая пустота не совсем пустота, а состоит из молекул водорода, то при определённых условиях их объединение подвергается гравитационному коллапсу.

Условия, которые его вызывают, могут быть разные. Например, расположение облака вблизи взрыва сверхновой, или столкновение двух облаков, или столкновение, поглощение галактик и т.д.

Стоит отметить, что молекулы, даже объединённые, двигаются в пространстве. Чаще всего они вращаются вокруг галактик или других космических объектов, имеющих более высокую гравитационную силу.

По данным учёных, в галактической пустоте содержится от 0,1 до 1 молекулы на кубический сантиметр. А в облаке их плотность примерно 1 миллион молекул на кубический сантиметр. Безусловно, масса и размер такого облачного образования больше в сотни тысяч раз солнечной.

Протозвезда

В момент коллапса молекулярное облако делится на некие сгустки. Если такие плотные части имеют массу меньше 100 солнечных, то они уже способны создать звезду. Можно сказать, что это звёздный фундамент.
После разделения начинается сжатие сгустков, что, в свою очередь, приводит к газовому нагреванию. И вуаля. Правда, еще не звезда, но уже сформированная, так называемая, протозвезда.

Далее, всё под теми же гравитационными силами, она превращается в шарообразное тело. Правда, в момент рождения звезды, её окутывает плотное газо-пылевое облако. Поэтому звезду практически не видно.

На самом деле, эволюция протозвезды в полноценное светило возможна при достаточной массе. Собственно, чем она больше, тем больше температура внутри тела. А так как во время сжатия температура увеличивается и запускается процесс термоядерных реакций, при которых водород превращается в гелий.

Наконец, с началом реакций в ядре тела устанавливается равновесие, и гравитационный коллапс останавливается. Вот и родилась звезда.

Как видно, начальный этап появления звёздного тела не просто момент, это как будто осознанное действие Вселенной. Хотя, можно сказать, это случайное чудо. В то же время запланированное, длительное и, безусловно, нужное и важное для общей структуры космоса.

Источник

Естествознание.ру

Звезды

Каждая звезда во Вселенной проходит свой жизненный путь — от рождения до смерти. Это называется звездной эволюцией. Для звезд длительность каждого этапа эволюции разная и зависит в основном от размеров звезды и внешних воздействий (наличия рядом другой звезды или звезд и т. п.). Однако последовательность этапов всегда одна и та же.

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

Начало

Любая звезда начинает свою жизнь как холодное разреженное облако межзвездного газа, оставшегося либо после Большого взрыва, либо после взрыва другой звезды (как вариант — звезд). Главная движущая сила, строящая звезду, — сила гравитации.

Рождение

Постепенно под действием силы гравитации аморфное газообразное облако сжимается, движение частиц в нем ускоряется. В его центре становится все жарче, и вот вспыхивает новая звезда — протозвезда. После этого процесс сжатия облака останавливается.

Развитие

Звезда живет в среднем 5-10 млрд лет. Затем на ней заканчивается основное топливо — водород, в реакцию вступают углерод и гелий. Однако их температура горения намного больше, чем у водорода, поэтому звезда значительно увеличится в размерах и превратится в красный гигант. Естественно, при этом ближайшие к гиганту планеты либо уничтожаются, либо превращаются в пылающие каменные шары.

Гибель

В состоянии красного гиганта ни одна звезда не задерживается долго. Реакция горения гелия и углерода нестабильна. Рано или поздно звезду разрывает со страшной силой, превращающей в пыль остатки планетарной системы.

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

Будущее вселенной

И раз уж мы проследили, как рождаются и умирают звезды, заглянем в будущее всей нашей расширяющейся Вселенной. С момента Большого взрыва (11) прошло примерно 14 млрд млрд лет (12). Если расширение продолжится с той же скоростью, что и сейчас, то соседние галактики через 100 млрд лет разойдутся на такие расстояния, что перестанут быть видимы (13). Через 100 триллионов миллиардов лет погаснет большая часть звезд, и во Вселенной будут преобладать черные дыры (14). Процесс образования звезд окончательно прекратится через триллион триллионов лет. Вся энергия Большого взрыва исчерпается, и во Вселенной наступит полная темнота (15).

Источник

Тест по астрономии по теме «Эволюция звезд»

Ищем педагогов в команду «Инфоурок»

Тест по теме «Эволюция звезд»

1. В чем заключается суть диаграммы Герцшпрунга- Ресела (спектр-светимость)

а) по горизонтальной оси- спектральный класс (или температура) звезд, а по вертикальной – их светимость

б) по горизонтальной оси- светимость звезд, а по вертикальной – их спектральный класс (или температура)

в) нет верного ответа

2. Сколько существует классов светимости?

3. Основной метод исследования эволюции звезд.

а) построение модели внешнего строения звезд

б) построение модели полного строения звезд

в) построение модели внутреннего строения звезд

4. Какие величины нужно знать для построения модели внутреннего строения звезд?

а) химический состав

б) давление (плотность)

5. Назовите внешние причины, стимулирующие звездообразования.

а) столкновение молекулярных облаков

б) звездный ветер от молодых горячих звезд

в) ударные звезды, порожденные вспышками сверхновых звезд

6. При каком условии происходит распад на отдельные фрагменты-сгустки?

а)достаточно великой массы

б) достаточно великого давления

в) достаточно великой плотности

7. При каком процессе происходит разогрев протозвезды?

а) гравитационное расширение

б) гравитационное сжатие

8. От чего зависит длительное сжатие протозвезды?

9. Какой момент называется рождение звезды?

а) момент начала тепловых реакций

б) момент начала ядерных реакций

в) момент начала термоядерных реакций

10. Какую звезду называют белым карликом?

а) компактная звезда с массой, равной примерно массе Земли, радиусом примерно в 100 раз меньше Земли

б) компактная звезда с массой, равной примерно массе Солнца, радиусом примерно в 100 раз меньше Солнца

в) компактная звезда с массой, равной примерно массе Луны, радиусом примерно в 100 раз меньше Луны

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

Номер материала: ДБ-452380

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

Пензенские родители смогут попасть в школы и детсады только по QR-коду

Время чтения: 1 минута

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

В Воронежской области ввели масочный режим в школах

Время чтения: 2 минуты

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

СК предложил обучать педагогов выявлять деструктивное поведение учащихся

Время чтения: 1 минута

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

Путин попросил привлекать родителей к капремонту школ на всех этапах

Время чтения: 1 минута

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды

Российские школьники завоевали пять медалей на олимпиаде по физике

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Звёздная эволюция

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.
какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звезды
Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Рождение звезды — протозвёздная фаза

Согласно закону сохранения импульса, по мере уменьшения размера облака растёт скорость его вращения, и в определённый момент вещество перестает вращаться как одно тело и разделяется на слои, продолжающие коллапсировать независимо друг от друга. Число и массы этих слоёв зависят от начальных массы и скорости вращения молекулярного облака. В зависимости от этих параметров формируются различные системы небесных тел: звёздные скопления, двойные звёзды, звёзды с планетами.

Молодая звёзда — фаза молодой звезды.

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективны, — процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам. Их судьба — постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца) качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности. Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B—F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Молодые звёзды с массой больше 8 солнечных масс. Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Зрелость звезды

По прошествии определённого времени — от миллиона до десятков миллиардов лет (в зависимости от начальной массы) — звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, возникавшего в ходе этих реакций и уравновешивавшего внутреннюю гравитацию в теле звезды, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования. Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

Финальные стадии звёздной эволюции

То, что происходит далее также зависит от массы звезды.

Старые звёзды с малой массой

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст Вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, и звезда лишь испаряется, становясь даже меньше, чем коричневый карлик.

Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, — масса такой звезды слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до степени, достаточной для «поджига» гелия. К таким звёздам относятся красные карлики, такие как Проксима Центавра, срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет. После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта в её ядре заканчивается водород, и начинаются реакции синтеза углерода из гелия. Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается и, как следствие, внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новую стадию в жизни звезды и продолжается некоторое время. Для звезды, по размеру близкой к Солнцу, этот процесс может занять около миллиарда лет.

Изменения в величине излучаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя изменения размера, температуры поверхности и выпуск энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название «звёзд позднего типа» (также «звезды-пенсионеры»), OH-IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат производимыми в недрах звезды тяжёлыми элементами, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении звезды-источника в таких оболочках формируются идеальные условия для активации космических мазеров.

Реакции термоядерного сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в результате сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность. В центре такой туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5—0,6 Солнечных масс и диаметр порядка диаметра Земли.

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает серьёзную перестройку тела звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы, — ядро звезды может закончить свою эволюцию как:

В двух последних ситуациях эволюция звёзды завершается катастрофическими событием — вспышкой сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится невидимым черным карликом.

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра, что превращает протоны в нейтроны, между которыми не существуют силы электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая теперь, фактически, представляет собой одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды

После того, как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта, её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.

В результате по мере образования всё более тяжёлых элементов Периодической системы, из кремния синтезируется железо-56. На этой стадии дальнейший экзотермический термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять весу вышележащих слоёв звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То, что происходит далее, пока до конца не ясно, но, в любом случае, происходящие процессы в считанные секунды приводят к взрыву сверхновой звезды невероятной мощности.

Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вылетающими из звездного ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа, но это не есть единственно возможный способ их образования, что, к примеру, демонстрируют технециевые звёзды.

Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «утилем» и, возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром, где они, сливаясь с протонами, образуют нейтроны. Этот процесс называется нейтронизацией. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.
какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звездыТакие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые нейтронные звёзды совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все звезды, пройдя фазу взрыва сверхновой, становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс такой звезды продолжится, и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше радиуса Шварцшильда. После этого звезда становится чёрной дырой.

какой момент называется рождение звезды. Смотреть фото какой момент называется рождение звезды. Смотреть картинку какой момент называется рождение звезды. Картинка про какой момент называется рождение звезды. Фото какой момент называется рождение звездыСуществование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовые эффекты, вероятно, позволяют этого избежать, например, в виде излучения Хокинга. Остаются ряд открытых вопросов. В частности, до недавнего времени оставался без ответа главный из них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект — это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта по движению газа там, а также зафиксировать быструю, миллисекундную для чёрных дыр звёздных масс, переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать, что наблюдаемый объект есть чёрная дыра.

В настоящее время черные дыры доступны только для косвенных наблюдений. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звёзд, используя теорему вириала. Ещё один вариант — это наблюдение профиля линий излучения газа из центральной области активных галактик, позволяющее определить скорости его вращения, которые достигают в блазарах десятков тысяч километров в секунду. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме сверхмассивной чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что аккреция не останавливается твёрдой поверхностью звезды, а просто уходит в области очень большого гравитационно красного смещения, где согласно с современными представлениями и данным (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *