что такое det a в матрице
Как вычислить определитель?
В ходе решения задач по высшей математике очень часто возникает необходимость вычислить определитель матрицы. Определитель матрицы фигурирует в линейной алгебре, аналитической геометрии, математическом анализе и других разделах высшей математики. Таким образом, без навыка решения определителей просто не обойтись. Также для самопроверки Вы можете бесплатно скачать калькулятор определителей, он сам по себе не научит решать определители, но очень удобен, поскольку всегда выгодно заранее знать правильный ответ!
Я не буду давать строгое математическое определение определителя, и, вообще, буду стараться минимизировать математическую терминологию, большинству читателей легче от этого не станет. Задача данной статьи – научить Вас решать определители второго, третьего и четвертого порядка. Весь материал изложен в простой и доступной форме, и даже полный (пустой) чайник в высшей математике после внимательного изучения материала сможет правильно решать определители.
Определитель можно вычислить только для квадратной матрицы (более подробно см. Действия с матрицами)
На практике чаще всего можно встретить определитель второго порядка, например: , и определитель третьего порядка, например:
.
Определитель четвертого порядка тоже не антиквариат, и к нему мы подойдём в конце урока.
Надеюсь, всем понятно следующее: Числа внутри определителя живут сами по себе, и ни о каком вычитании речи не идет! Менять местами числа нельзя!
(Как частность, можно осуществлять парные перестановки строк или столбцов определителя со сменой его знака, но часто в этом нет никакой необходимости – см. следующий урок Свойства определителя и понижение его порядка)
Таким образом, если дан какой-либо определитель, то ничего внутри него не трогаем!
Обозначения: Если дана матрица , то ее определитель обозначают
. Также очень часто определитель обозначают латинской буквой
или греческой
.
1) Что значит решить (найти, раскрыть) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО. Знаки вопроса в вышерассмотренных примерах – это совершенно обыкновенные числа.
2) Теперь осталось разобраться в том, КАК найти это число? Для этого нужно применить определенные правила, формулы и алгоритмы, о чём сейчас и пойдет речь.
Начнем с определителя «два» на «два»:
ЭТО НУЖНО ЗАПОМНИТЬ, по крайне мере на время изучения высшей математики в ВУЗе.
Сразу рассмотрим пример:
Готово. Самое главное, НЕ ЗАПУТАТЬСЯ В ЗНАКАХ.
Начнем с двух простых способов
Аналогично определителю «два на два», определитель «три на три» можно раскрыть с помощью формулы:
Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок».
Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:
Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс».
Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:
Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.
Теперь рассмотрим шесть нормальных способов для вычисления определителя
Почему нормальных? Потому что в подавляющем большинстве случаев определители требуется раскрывать именно так.
Как Вы заметили, у определителя «три на три» три столбца и три строки.
Решить определитель можно, раскрыв его по любой строке или по любому столбцу.
Таким образом, получается 6 способов, при этом во всех случаях используется однотипный алгоритм.
Определитель матрицы равен сумме произведений элементов строки (столбца) на соответствующие алгебраические дополнения. Страшно? Все намного проще, будем использовать ненаучный, но понятный подход, доступный даже для человека, далекого от математики.
В следующем примере будем раскрывать определитель по первой строке.
Для этого нам понадобится матрица знаков: . Легко заметить, что знаки расположены в шахматном порядке.
Внимание! Матрица знаков – это мое собственное изобретение. Данное понятие не научное, его не нужно использовать в чистовом оформлении заданий, оно лишь помогает Вам понять алгоритм вычисления определителя.
Сначала я приведу полное решение. Снова берем наш подопытный определитель и проводим вычисления:
И главный вопрос: КАК из определителя «три на три» получить вот это вот: ?
Итак, определитель «три на три» сводится к решению трёх маленьких определителей, или как их еще называют, МИНОРОВ. Термин рекомендую запомнить, тем более, он запоминающийся: минор – маленький.
Коль скоро выбран способ разложения определителя по первой строке, очевидно, что всё вращается вокруг неё:
Элементы обычно рассматривают слева направо (или сверху вниз, если был бы выбран столбец)
Поехали, сначала разбираемся с первым элементом строки, то есть с единицей:
1) Из матрицы знаков выписываем соответствующий знак:
2) Затем записываем сам элемент:
3) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит первый элемент:
Оставшиеся четыре числа и образуют определитель «два на два», который называется МИНОРОМ данного элемента (единицы).
Переходим ко второму элементу строки.
4) Из матрицы знаков выписываем соответствующий знак:
5) Затем записываем второй элемент:
6) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит второй элемент:
Оставшиеся четыре числа записываем в маленький определитель.
Ну и третий элемент первой строки. Никакой оригинальности:
7) Из матрицы знаков выписываем соответствующий знак:
8) Записываем третий элемент:
9) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит третий элемент:
Оставшиеся четыре числа записываем в маленький определитель.
Остальные действия не представляют трудностей, поскольку определители «два на два» мы считать уже умеем. НЕ ПУТАЕМСЯ В ЗНАКАХ!
Аналогично определитель можно разложить по любой строке или по любому столбцу. Естественно, во всех шести случаях ответ получается одинаковым.
Определитель «четыре на четыре» можно вычислить, используя этот же алгоритм.
При этом матрица знаков у нас увеличится:
В следующем примере я раскрыл определитель по четвертому столбцу:
А как это получилось, попробуйте разобраться самостоятельно. Дополнительная информация будет позже. Если кто захочет прорешать определитель до конца, правильный ответ: 18. Для тренировки лучше раскрыть определитель по какому-нибудь другому столбцу или другой строке.
Потренироваться, раскрыть, провести расчёты – это очень хорошо и полезно. Но сколько времени вы потратите на большой определитель? Нельзя ли как-нибудь быстрее и надёжнее? Предлагаю ознакомиться с эффективными методами вычисления определителей на втором уроке – Свойства определителя. Понижение порядка определителя.
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам
О том, как правильно понимать определитель матрицы
Расшифровывается это дело следующим образом: если у нас есть матрица
над некоторым полем , то определителем этой матрицы называют сумму всевозможных произведений, состоящих из
элементов этой матрицы, взятых по одному из каждой строки и из каждого столбца, причем каждое произведение входит в эту сумму с тем знаком, который имеет соответствующая перестановка индексов этих элементов в этом произведении.
Другой способ введения определителя связан с его характеристическим свойством. Напомним, полилинейной формой называется функция , определенная на декартовом произведении некоторых векторных пространств
(заданных над одним и тем же полем
), принимающая значения в поле
и линейная по каждому аргументу:
. Форма называется кососимметрической, если при инверсии любых двух (не обязательно соседних) аргументов она меняет знак.
Можно конечно всюду далее рассматривать исключительно поля характеристики 2 и пользоваться «слабым» определением кососимметричности, а можно поступить умнее и немного усилить определение кососимметричности специально для полей характеристики 2 так, чтобы обычная кососимметричность следовала из «сильной». Для этого достаточно потребовать 2 вещи: во-первых, форма должна быть полилинейна, а во-вторых она должна принимать значение ноль всегда, когда среди ее аргументов есть равные. Свойство, которое вытекало из «наивной» кососимметричности для полей характеристики
2 само теперь является составной частью определения кососимметричности (правда только для полей характеристики 2).
Из полилинейности и равенства формы нулю на строках с равными аргументами следует, что если к одному вектору прибавить другой, умноженный на число, то значение формы не изменится. При умножении какого-либо вектора на число 0 сама форма умножается на это число (в частности, если обратить знак какого-либо вектора из набора, то знак самой формы тоже поменяется.
Произвести инверсию векторов в наборе аргументов можно с помощью преобразований этих двух типов. И если внимательно проследить цепочку преобразований, то в конце концов окажется, что форма поменяла знак.
Далее под кососимметричностью будем понимать кососимметричность в «сильном» смысле.
Определение
Определитель матриц— это единственная кососимметрическая полилинейная форма строк матрицы, нормированная единицей на единичном наборе векторов.
Надо сказать, это не самое плохое определение. Но и оно не лишено недостатков. Основные вопросы здесь возникают по поводу кососимметричности. В первую очередь непонятно, почему это свойство вообще важно. Ну меняет функция знак при перестановке двух аргументов и пусть меняет, почему мы так стремимся исследовать именно это свойство, а не какое-нибудь другое. Но здесь все еще хуже. Мы хотим, чтобы форма еще и принимала нулевое значение на наборе, содержащем равные вектора. И в некотором смысле для нас это даже важнее самой кососимметричности, раз мы стали подгонять определение последней под выполнение этого свойства. Все эти экзерсизы с характеристиками выглядят довольно искусственно.
В действительности есть очень простой и естественный пусть построения определителя, при котором все эти вопросы отпадают сами собой. И я постараюсь по возможности максимально последовательно описать этот способ.
Начнем с некоторых предварительных замечаний. Основным объектом изучения линейной алгебры являются конечномерные векторные пространства. Неформально говоря, на любое — мерное векторное пространство над полем
можно смотреть как на «координатное» пространство
, состоящее из упорядоченных наборов длины
элементов поля
. Более строго, пусть у нас есть
— мерное векторное пространство
над полем
. Выбор (упорядоченного) базиса
этого пространства индуцирует изоморфизм
, ставящий в соответствие каждому вектору
набор
его координат в базисе
. Таким образом, во всех дальнейших построениях речь пойдет по большей части про вектора координатного пространства.
Очевидно, некоторый набор векторов пространства
является линейно (не)зависимым, тогда и только тогда, когда соответствующий ему набор векторов пространства
будет линейно (не)зависимым.
Свойство линейной зависимости/независимости действительно очень важно. Дело в том, что система из 1″ alt=»n>1″ src=»https://habrastorage.org/getpro/habr/upload_files/4e1/89f/e1d/4e189fe1dc9b6260122146ddfd0031b7.svg»/>векторов пространства будет линейно зависимой тогда и только тогда, когда найдется вектор в этой системе, который можно линейно выразить через остальные.
Довольно естественным выглядит желание иметь некоторую функцию— индикатор линейной зависимости векторов. Учитывая, что любое векторное пространство «оцифровывается» своим координатным пространством, достаточно иметь такую функцию, определенную на декартовом произведении
копий пространства
и принимающую значения в поле
. Таким образом, мы предъявляем к функции
всего лишь 2 очень естественных требования:
Она должна принимать нулевое значение на любой линейно зависимой системе векторов.
На аргументы этой функции удобно смотреть как на строки матрицы
Заметим, на данном этапе мы еще даже не знаем, существует ли такая функция или нет. Но мы можем в предположении ее существования посмотреть на ее поведение.
. Действительно, строка аргументов, содержащая пару равных значений, очевидно, линейно зависима, а значит функция
будет принимать на ней нулевое значение.
кососимметрична (в любом смысле, учитывая полилинейность + п.1). Доказательство абсолютно аналогично тому, которое находится выше под спойлером.
Рассмотрим, чему равнана некотором наборе строк
:
Здесь мы просто выразили векторы через единичные, затем по полилинейности получили сумму по всем упорядоченным наборам соответствующих произведений, выкинули из них те, которые содержат повторяющиеся аргументы (тем самым получив сумму по всем перестановкам), а затем применили обратные перестановки к единичным векторам.
Смотрим на последнюю строчку в получившейся формуле и видим множитель . Чтобы упростить формулу и не таскать лишний множитель, добавим к тем 2 требованиям к функции
третье требование:
.
Таким образом, если интересующая нас функциясуществует, то она имеет вид:
Нарисовалась знакомая нам формула Лейбница. Самое замечательное то, что в ней нет свободных переменных, а это значит, что мы бесплатно получили единственность интересующей нас функции.
Осталось лишь доказать существование. Капитан намекает, что для этого достаточно взять ту функцию, которая у нас получилась.
А дальше дело техники. Проверяем, что получили мы действительно, что хотели и даже больше. Полученную функцию называем определителем и спокойно приступаем к доказательству основных его свойств.