Что такое эффективная мощность ибп
Как выбрать ИБП по мощности?
Выходная мощность – важная характеристика ИБП. Ошибка в данном параметре при покупке устройства чревата бесполезной тратой денег на ИБП, который либо не сможет работать из-за перегрузки, либо, наоборот, будет функционировать с большой недозагрузкой, что менее опасно, но не принесет никакой пользы.
В нашей статье рассмотрен правильный алгоритм подбора ИБП по мощности, а также приведено несколько примеров расчета мощности прибора.
Содержание
1. Определите мощность нагрузки
Общая потребляемая мощность нагрузки равняется сумме потребляемых мощностей всех питаемых от ИБП устройств.
Потребляемую мощность отдельного устройства можно узнать из технической документации или заводского шильдика. Встречаются следующие обозначения: «потребляемая мощность», «потребляемая энергия», «присоединительная мощность», «электрическая мощность», просто «мощность» или «power» (возможно использование и других схожих по смыслу выражений, а также сокращения «Р»).
Если получение сведений о потребляемой мощности из технической документации невозможно (данные не представлены или документация отсутствует), то их следует поискать в интернете либо запросить у производителя/продавца изделия.
Процесс определения потребляемой мощности нагрузки, несмотря на кажущуюся простоту, имеет несколько нюансов, недостаток внимания к которым приводит к ошибкам и приобретению неподходящего под задачи пользователя ИБП.
1.1. Пусковые токи
Оборудование, в состав которого входит электродвигатель, в момент включения расходует энергии в несколько раз больше, чем в обычном режиме (вплоть до восьмикратного превышения). В быту к таким изделиям относятся: стиральные и посудомоечные машины, холодильники, насосы, кондиционеры, вентиляторы, пылесосы, кухонные комбайны – выбор ИБП для всего перечисленного проводится с использованием исключительно пусковой, то есть максимальной мощности. Информация о её величине может как приводиться в характеристиках устройства, так и отсутствовать. Во втором случае для определения пускового энергопотребления рекомендуем проконсультироваться со специалистом.
1.2. Не каждая мощность электрическая
Часто электрооборудование имеет ещё и мощность, указывающую на эффективность работы по основному назначению. Например, тепловая мощность для обогревательного прибора или мощность обдува (охлаждения) для кондиционера.
1.3. Единицы измерения
Как правило, производители бытовых приборов приводят для своей продукции показатель активной мощности, размерность которой указывается в ваттах или киловаттах (сокращено Вт/кВТ или W/kW). Изготовители ИБП предпочитают характеризовать выпускаемые устройства через показатель полной мощности – это другая физическая величина, измеряемая в вольт-амперах (ВА/кВА или VA/kVA).
На практике недостаточное внимание к единицам измерения может привести, например, к покупке для нагрузки с потреблением в 900 ватт «бесперебойника» с номиналом 1000, но вольт-ампер, которые будут соответствовать только 850 ваттам (приведены обобщённые цифры – у разных ИБП разное соотношение полной и активной мощности).
Во избежание подобных ошибок и связанных с ними перегрузок рекомендуется рассматривать потребляемую мощность нагрузки, а также выходную мощность ИБП и в Вт, и в ВА. Если техническая документация позволяет узнать только один вид мощности, то второй можно определить с помощью формулы 1. Необходимая для расчета величина cosφ обычно приводится в характеристиках электроприбора. Наиболее распространённые наименования данного параметра: «коэффициент мощности», «power factor», «cosφ» или «PF».
При отсутствии исходящих от производителя данных о cosφ, его допустимо принять равным:
2. Предусмотрите запас мощности
Выбирать ИБП с номиналом в точности равным мощности подключаемого оборудования не следует. К расчетному энергопотреблению нагрузки нужно прибавить ещё 30%, которые составят запас мощности. Данный запас, во-первых, позволит дозагрузить «бесперебойник» в процессе эксплуатации, а во-вторых, сократит число переходов на аккумуляторы при некритичных отклонениях сетевого напряжения.
3. Определите подходящую модель ИБП по мощности
Необходимо сопоставить мощностные характеристики предлагаемых производителем или поставщиком «бесперебойников» с показателем, полученным прибавлением к максимальному энергопотреблению нагрузки запаса в 30% (далее – нагрузочный показатель). Ближнее к данному показателю мощностное значение (с округлением в большую сторону) и будет подходящим номиналом ИБП.
Примеры подбора ИБП по мощности
Подбор ИБП для газового котла
Начнём с простого случая – выбор ИБП для единичного потребителя, например, газового котла.
Обычно в документации нагревательных приборов приводятся сразу несколько мощностей. Предположим следующие формулировки и значения:
Из названия параметров видно, что первые два – характеризуют основную работу котла, а третий – указывает на потребляемые из электросети ватты, количество которых и является фактической нагрузкой на «бесперебойник».
Теперь рассчитаем необходимый мощностной запас: 165 х 0,3 = 49,5 Вт.
После чего определим нагрузочный показатель: 165 + 49,5 = 214,5 Вт.
Используя формулу 1 и приняв сosφ = 0,95, переведём ватты в вольт-амперы: 214,5 Вт / 0,95 = 225,7 ВА.
В итоге нагрузочный показатель составит 214,5 Вт и 225,7 ВА.
Рассмотрим мощностной ряд on-line ИБП «Штиль» – ближайшим к такому показателю номиналом в 225 Вт/250 ВА обладают модели: SW250, SW250LD, SW250SL и ST250.
Подбор ИБП для котла отопления и циркуляционного насоса
Усложним задачу и предположим, что имеющий те же характеристики котёл работает в связке с внешним циркуляционным насосом, номинальная мощность которого 45 Вт.
В таком случае нагрузка на ИБП в обычном режиме составит: 165 Вт + 45 Вт = 210 Вт.
Однако не забываем про характерные для насоса пусковые токи и, увеличив его номинал втрое, находим максимально возможное стартовое энергопотребление: 165 Вт + 135 Вт = 300 Вт.
Исходя из его значения определяем нагрузочный показатель в Вт: 300 Вт + 300 Вт х 0,3 = 390 Вт.
Из-за различия в величине cosφ у котла и насоса (0,95 и 0,7) получение нагрузочного показателя в ВА потребует двух действий: 165 / 0,95 + 135 / 0,7 = 366,5 ВА – суммарная максимальная полная мощность. 366,5 ВА + 366,5 ВА х 0,3 = 476,5 ВА – нагрузочный показатель.
Анализируя продукцию «Штиль», приходим к выводу, что для пары «насос – котёл» подойдёт on-line ИБП серии SW с выходной мощностью 400 Вт/500 ВА (модели SW500L и SW500SL).
Подбор ИБП для бытовых приборов
От ИБП необходимо запитать несколько потребителей, а именно: холодильник, стиральную машину, телевизор и компьютер.
Пусть в технической документации перечисленных электроприборов присутствуют следующие записи относительно мощностных характеристик:
Использование слов «максимальная» и «пиковая» указывает на то, что приведённый показатель отражает максимально возможное энергопотребление прибора, соответственно, для стиральной машины и компьютера оставляем значение паспортной мощности без изменения. Телевизор не имеет пусковых токов, поэтому его мощность также не меняем.
Для холодильника учитываем стартовый скачок энергопотребления и увеличиваем заявленный номинальный показатель в пять раз: 95 Вт х 5 = 475 Вт.
Находим суммарную максимально возможную активную мощность всех потребителей: 475 Вт + 1000 Вт + 55 Вт + 300 Вт = 1830 Вт.
После чего, используя соответствующее каждому прибору значение cosφ, рассчитываем суммарную максимально возможную полную мощность: 475 Вт / 0,8 + 1000 Вт / 0,75 + 55 Вт / 0,95 + 300 Вт / 0,99 = 2288 ВА.
Далее движемся по стандартному алгоритму и находим нагрузочный показатель в Вт и ВА: 1830 Вт + 1830 Вт х 0,3 = 2379 Вт; 2288 ВА + 2288 ВА х 0,3 = 2974,4 ВА.
Сверяя полученные цифры с модельным рядом ИБП Штиль, находим ближайшее в большую сторону значение – 2700 Вт/3000 ВА. «Бесперебойник» с такой выходной мощностью, в частности, модель ST1103SL сможет гарантированно работать с рассмотренной группой потребителей.
Что такое источник бесперебойного питания (ИБП), для чего нужен бесперебойник, как выбрать, сколько стоит
Не секрет, что одна из основных причин поломок электрического оборудования – сбои и помехи в электросетях. В настоящее время во многих регионах России существуют проблемы с качеством и количеством электроэнергии, доходящей до конечного потребителя. Это и плановые отключения, и перебои, вызванные как перегрузками, так и разного рода авариями. Чтобы избежать поломок электрооборудования от различных сбоев и помех нужно подключить к ним источник бесперебойного питания.
Источник бесперебойного питания или ИБП – это прибор, позволяющий вашему оборудованию, например, котлу отопления или компьютеру в течение определенного времени работать от аккумуляторных батарей. Таким образом, в случае отключения или выхода за пределы нормальных показателей, электрической сети, бесперебойник будет выдавать на выходе питание, которое полностью соответствует всем стандартам, что поможет избежать поломки котла и прочих неприятных последствий проблем с электроэнергией.
Источники бесперебойного питания (uninterruptible power supply – UPS), когда-то устанавливались только в вычислительных центрах или системах жизнеобеспечения. Сейчас ИБП являются сравнительно недорогим дополнением к любому электрическому оборудованию, которое легко окупает себя, продлевая срок службы этого электрооборудования.
Вы можете приобрести ИБП ELTENA у наших дилеров. Выбрать нужный источник бесперебойного питания, найти дилера в своем городе, уточнить цены на все ИБП или узнать, сколько стоит конкретное оборудование, вы можете на нашем официальном сайте ELTENA – eltena.com.
С 2002 по 2018 года ИБП ELTENA поставлялись под брендом INELT. Новый международный бренд ELTENA ориентирован на развитие продаж в России и за ее пределами, олицетворяет динамичное развитие и подчеркивает высокое качество оборудования.
Модельный ряд источников бесперебойного питания ELTENA
Модельный ряд ИБП ELTENA
Мощность
Применение источников бесперебойного питания
Компьютер, кассовый аппарат, периферийная техника, телефонная станция
Компьютер, сервер, периферийная техника, сетевое оборудование, группа рабочих станций, офисная АТС
Компьютер, бытовая техника, телекоммуникационное оборудование, инженерные системы,
котел отопления, циркуляционный насос, группа рабочих станций, офисная АТС, в стойку 19”,
серверное оборудование, оборудование в уличном антивандальном шкафу, системы безопасности
Сервер, группа серверов, ЦОД, телекоммуникационный узел, АСУ ТП, котел отопления, небольшой офис, инженерные системы, система «Умный дом», система жизнеобеспечения зданий, осветительное оборудование, промышленное оборудование, отопительное оборудование (котлы и насосы), медицинское оборудование
Содержание:
Все источники бесперебойного питания по своей структурной схеме подразделяются на 3 основных типа:
ИБП резервного типа (Off-Line или Standby)
Недорогие источники бесперебойного питания, предназначенные в основном для защиты не очень критичных рабочих станций. Бесперебойник этого типа передает на нагрузку напряжение непосредственно от входной сети, фильтруя импульсные помехи. При выходе напряжения за допустимые пределы ИБП переводит оборудование на питание от батарей через простейший инвертор, дающий на выходе ступенчатую аппроксимацию синусоиды.
Линейно-интерактивный (Line-Interactive) ИБП
ИБП этого типа обеспечивает питание нагрузки через ступенчатый стабилизатор, корректирующий пониженное или повышенное входное напряжение, фильтруя импульсные помехи. При выходе входного напряжения за пределы диапазона регулировки бесперебойник переводит оборудование на питание от батарей через инвертор (ИБП с двойным преобразованием напряжения (On-Line)). Рекомендуется использовать такие ИБП для серверов, рабочих станций, групп рабочих станций, мини-АТС и другой офисной техники, а также сетевого и телекоммуникационного оборудования.
По форме напряжения инвертора линейно-интерактивные модели ИБП делятся на 2 класса:
1) Со ступенчатой аппроксимацией синусоиды на выходе (ELTENA Smart Station). Такие бесперебойники пригодны только для защиты оборудования с импульсными блоками питания.
2) C синусоидальным выходным напряжением (ELTENA Intelligent).
ИБП с двойным преобразованием напряжения (On-Line — Онлайн)
Эта схема построения источника бесперебойного питания обеспечивает качественно иной уровень защиты нагрузки. Поступающее на вход переменное сетевое напряжение сначала преобразуется выпрямителем в постоянное, а затем с помощью инвертора снова в переменное. Таким образом, на выходе ИБП формируется качественная синусоида c постоянной амплитудой независимо от наличия и формы входного напряжения. Аккумуляторная батарея непрерывно включена в цепь постоянного напряжения, что обеспечивает нулевое время перехода на батареи. При перегрузке или выходе ИБП из строя нагрузка продолжает получать питание через обходную цепь байпас.
К этому типу относятся все модификации ELTENA Monolith. ИБП, построенные по такой схеме, можно использовать для защиты практически любого оборудования, вплоть до самого критичного. Для достижения максимальной надежности и/или увеличения мощности системы бесперебойного питания ИБП с двойным преобразованием напряжения могут объединяться в параллельные системы. В случае системы с резервированием N+1 (добавляется один дополнительный бесперебойник к системе, рассчитанной на нагрузку: N*мощность одного ИБП) выход одного бесперебойника из строя никак не сказывается на работе подключенного к системе оборудования. Заметим, что строить параллельные системы без резервирования не рекомендуется, так как это снижает надежность системы в целом: выход из строя любого из ИБП приводит к перегрузке.
Основные характеристики ИБП
Источники бесперебойного питания доступны самому широкому кругу потребителей, могут применяться как дома или на даче, так и в офисе или в промышленности; они позволяют поддерживать и защищать оборудование от отдельно стоящего компьютера или сервера до дата-центра, от локальной инженерной системы до целого офисного или промышленного здания.
Расчет мощности источника бесперебойного питания
При подборе источника бесперебойного питания необходимо определиться с его мощностью. Поскольку ИБП пригодный для обеспечения работы домашнего компьютера, будет совершенно бесполезен для мощного медицинского оборудования. Чтобы определить мощность источника бесперебойного питания, нужно сначала учесть суммарную нагрузку. Необходимо сложить значения мощности всего оборудования, подключаемого к ИБП. Например, нужно подключить к источнику бесперебойного питания котел отопления (мощность — 200 Вт) и циркуляционный насос (мощность – 200 Вт). Сумма потребления общая составит 400 Вт. Однако дело заключается в том, что при запуске токи оборудования довольно значительно превышают номинал, поэтому потребляемая мощность увеличивается в разы. Когда для питания нагрузки, равной четырем ста ватт мы выбираем бесперебойник таких же значений мощности, может возникнуть перегрузка, и техника отключится. Чтобы этого избежать, надо учитывать коэффициент токов пуска. Каждому виду техники присущ свой показатель пусковых токов: для котлов отопления — 3.4, для циркуляционных насосов — 3.5.
Подсчитываем:
Котел — 200*3.4 = 680 Вт
Насос — 200*3.5 = 700 Вт
Значения складываем, получаем 1 380 Вт
Это суммарная мощность оборудования, измеряемая ваттами. Мощность бесперебойника определяется вольт-амперами, то есть это полная мощность, произведенная для питания нагрузки. Для вычисления показателя необходимой произведенной полной мощности ИБП, нужно мощность полезную разделить на коэффициент 0,7.
1380 Вт/0,7 = 1 971 Вт.
Видно, что конечное значение мощности превосходит суммарную мощность, потребляемую оборудованием. Объясняется это тем, что частично мощность теряется с образованием магнитных полей, либо в резисторах и трансформаторах, и бесперебойник на выходе не выдает полный объем мощности. Получается, для эффективного функционирования ИБП с подключенным оборудованием, в данном случае, мощность его не должна быть менее 1971 Вт.
Расчет времени автономной работы
Для большинства обычных офисных ИБП (UPS) небольшой мощности время работы от батареи при максимальной нагрузке составляет 4-15 минут. Если нагрузка источника бесперебойного питания меньше максимальной, то время работы от батареи увеличивается. Из-за нелинейности разрядной кривой аккумуляторной батареи это увеличение не пропорционально уменьшению нагрузки. Если нагрузка уменьшилась вдвое, то время работы может увеличиться в 2.5-5 раз, если втрое, то время увеличивается в 4-9 раз и т.д. Бесперебойник большой мощности и некоторые ИБП малой мощности имеют возможность увеличения времени автономной работы за счет замены батареи на батарею большей емкости или установки дополнительной батареи. Батарея большей емкости может устанавливаться в том же корпусе или может устанавливаться дополнительный корпус для батареи.
Выберите подходящий Вам источник бесперебойного питания, используя сервис «Подбор оборудования»
Как выбрать источник бесперебойного питания
Сколь бы надежен не был ваш поставщик электропитания, броски напряжения иногда случаются на любых линиях. Каждый пользователь ПК хоть раз, да сталкивался с внезапной перезагрузкой или отключением компьютера из-за неполадок на питающей линии. И компьютеры – не единственный вид техники, требующий бесперебойного электропитания.
Продолжительное отключение электропитания может привести к заморозке системы отопления частного дома. ИБП с подключаемыми аккумуляторами способен «продержать на плаву» циркуляционный насос и электронику котла в течение нескольких часов, и стоить такой ИБП будет намного дешевле, чем генератор с автозапуском.
Роутер, подключенный к ИБП, позволит оставаться «онлайн» и при отсутствии электропитания. Потребляет роутер совсем немного и емкости аккумулятора даже недорогого «бесперебойника» хватит на пару-тройку часов его работы.
Серверам и внешним дисковым накопителям бесперебойное питание совершенно необходимо – внезапное отключение электричества может привести к потере данных.
И вообще, наличия ИБП требует любая автоматика, сбой в работе которой может привести к серьезным последствиям – медицинское и технологическое оборудование, системы пожарной и охранной сигнализации и т.д. Но параметры электропитания у разных видов техники разные, поэтому и ИБП для них потребуется с различными характеристиками.
Характеристики источников бесперебойного питания.
Вид устройства.
Резервный ИБП имеет наиболее простую конструкцию. Электроника источника следит за уровнем входного напряжения, и, при его выходе за установленные рамки (обычно +10% от номинала), переключается на питание от аккумулятора.
Кроме того, переключение на аккумулятор занимает некоторое время, что может быть критичным для некоторых видов техники. Например, для импульсных блоков питания с активным корректором мощности (APFC), которым оснащено большинство таких БП мощностью более 400 Вт. При подборе ИБП для компьютеров, специальной аппаратуры, аудио- и видеотехники с подобными блоками питания следует оставлять большой запас по мощности, либо выбирать ИБП другого вида.
Линейно-интерактивный ИБП, фактически, состоит из резервного ИБП и стабилизатора. При наличии в сети пониженного или повышенного напряжения, автоматический регулятор напряжения (AVR) стабилизирует его, а на аккумулятор ИБП переключается только при настолько большом отклонении напряжения от нормального, что стабилизировать его уже невозможно.
Линейно-интерактивные ИБП немного дороже резервных, но для бытового применения именно этот вид является оптимальным. Единственный случай, когда ему следует предпочесть резервный – когда в вашей сети стабильно пониженное напряжение, подходящее, однако, для защищаемого электроприбора. Резервный ИБП просто пропустит это напряжение в компьютер, а линейно-интерактивный будет его повышать до нормального. Но продолжительная работа в таком режиме может сильно сократить ресурс AVR (особенно на недорогих «бесперебойниках»).
Недостаток, связанный с кратковременным отсутствием питания во время переключения на аккумулятор у линейно-интерактивных ИБП также присутствует.
Устройства с двойным преобразованием (on-line) обеспечивают наилучшее качество электропитания. У ИБП этого вида аккумулятор подключен к цепи питания постоянно, поэтому провалы напряжения в момент перехода на автономное питание отсутствуют. Входной ток выпрямляется, его напряжение понижается до напряжения аккумулятора, после чего инвертор преобразует его в переменный 230 В /50 Гц.
Такие ИБП стоят заметно дороже остальных видов, зато выдают стабильную частоту, напряжение и форму синусоиды при любых помехах на входной линии питания.
Выходная мощность (ВА) стабилизатора определяет максимальную суммарную полную мощность подключенных к нему электроприборов. Однако следует иметь в виду, что приведенное в паспорте на электроприбор значение в Ваттах – это его активная мощность, т.е., выделяющаяся в виде тепла или света.
Многие подключаемые к ИБП электроприборы создают вдобавок к активной еще и реактивную нагрузку, и полная выходная мощность ИБП должна подбираться с её учётом. Для определения полной мощности электроприбора следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте. Если найти это значение не удается, можно воспользоваться таблицей:
Поскольку чаще всего ИБП используется для защиты ПК, часто возникает вопрос: какую мощность имеет компьютер? Самый точный способ определения мощности – расчет на основе замера потребляемого им тока. Проще и безопаснее всего это сделать с помощью токовых клещей и самодельного удлинителя с раздельными проводниками.
Измерение тока с помощью мультиметра связано с опасностью поражения электрическим током и делать это, не обладая соответствующими навыками, небезопасно.
Измерение следует производить, дав на процессор и видеокарту максимальную нагрузку – это можно сделать с помощью требовательной к ресурсам игры или с помощью специальных программ (например, OCCT в режиме power supply). Измеренное значение умножается на величину напряжения в сети – это и будет искомая полная мощность (ВА) компьютера.
Простой, но грубый способ – взять максимальную мощность блока питания (в Ваттах), обычно приведенную на корпусе БП и поделить на коэффициент мощности. Реальная мощность компьютера, скорее всего, будет ниже, но уж точно не выше.
К примеру, для защиты компьютера с блоком питания без PFC мощностью 300 Вт и монитором мощностью 50 Вт потребуется ИБП с входной мощностью (ВА) 300/0,65+50/0,8 = 524 ВА. Поскольку реальная мощность системного блока, скорее всего, ниже 300 Вт, ИБП на 500 ВА могло бы и хватить для этого компьютера. Однако с учетом того, что пусковые токи (неизбежные при переключении на аккумулятор) могут превышать номинальные вдвое, выбор ИБП на 750 или 1000 ВА представляется более оправданным.
Следует также отметить, что недорогие ИБП часто характеризуются слабой перегрузочной способностью и не могут выдерживать высокие токи даже очень непродолжительное время (менее 100 мс). Поэтому при покупке недорогого ИБП необходимо следить, чтобы пиковая мощность нагрузки не превышала выходную мощность «бесперебойника».
Если определение полной выходной мощности (ВА) представляется слишком сложным, можно подобрать ИБП по активной выходной мощности (Вт) – обычно этот параметр тоже приводится в паспорте ИБП.
Однако большинство производителей при указании активной выходной мощности ориентируются на cos(φ) = 0,6-0,7, подходящий только при использовании ИБП для защиты компьютеров с блоками питания без PFC.
Коэффициент мощности многой другой техники выше, и, подбирая ИБП по активной мощности в ваттах, вы рискуете переплатить, выбрав ИБП более мощный, чем вам действительно необходимо.
Тип формы напряжения может быть важен для некоторых видов техники. В электродвигателях, трансформаторах, катушках индуктивности «ступенчатая» форма питающего тока приводит к дополнительным нагрузкам – это может проявляться изменением звука работы, увеличенным нагревом обмоток и ускоренным износом. Проблемы могут возникнуть с некоторыми моделями аудио- и видеотехники, измерительными приборами и медицинской техникой.
Импульсные блоки питания к форме напряжения невосприимчивы – ступенчатая аппроксимация синусоиды подходит для любых компьютеров. Проблемы, возникающие на современных блоках питания с активным корректором мощности (APFC) чаще всего связаны не с формой сигнала, а с недостатком запаса по мощности и низкой перегрузочной способностью ИБП. При переключении на аккумулятор и падении входного напряжения, APFC резко увеличивает потребляемый ток, при этом нарастание потребления происходит так быстро, что ИБП часто отключается защитным автоматом (токовым реле), при том, что контроллер даже не успевает «заметить» перегрузку.
Однако, некоторые блоки питания с APFC плохо работают при ступенчатой синусоиде – корректор успевает среагировать на горизонтальную «ступеньку» как на пониженное напряжение, увеличивает ток потребления и перегружает ИБП, приводя к срабатыванию его защиты и отключению. И, хотя многие БП с APFC прекрасно «уживаются» со ступенчатой синусоидой, чтобы не оказаться в ситуации, когда ПК откажется работать с «бесперебойником», следует либо убедиться в их совместимости перед покупкой, либо выбирать ИБП подороже: с «чистой» синусоидой и запасом по мощности, либо ориентироваться на устройство с двойным преобразованием. В последнем случае чрезмерный запас по мощности не нужен, а синусоида у таких устройств и так «чистая».
Тип выходных разъемов питания на современных ИБП может быть различным. Старые ИБП все имели выходные разъемы стандарта IEC 320 C13 («компьютерные») для подключения питающих кабелей системного блока и монитора.
Некоторые специализированные ИБП, предназначенные для создания линий бесперебойного электропитания, оснащаются клеммами для удобства прямого подключения линейных проводов.
Удобно, если ИБП имеет какой-нибудь интерфейс, по которому он может «сообщить» работающему на ПК приложению о пропадании напряжения. Это позволит сохранить все открытые документы, записать на диск данные из буфера и корректно завершить работу компьютера в автоматическом режиме, даже если оператора поблизости нет. Особенно это важно для серверов: сбой сервера – вещь неприятная, но она может стать еще неприятнее, если «испортятся» хранящиеся на нём данные из-за некорректного завершения работы. ИБП с интерфейсом USB или RS-232 подключается интерфейсным кабелем непосредственно к защищаемому компьютеру, на котором должно быть запущено соответствующее ПО.
Функция «холодного старта» позволяет осуществить запуск подключенных к ИБП электроприборов при отсутствии питающего напряжения. Холодный старт позволяет использовать ИБП как автономный источник питания для маломощной нагрузки.
Время автономной работы зависит от емкости установленных аккумуляторов и суммарной мощности подключенных потребителей. Производителем обычно указывается продолжительность автономной работы при определенной мощности нагрузки. Но зачастую мощность нагрузки сильно отличается от приведенной производителем. В этом случае следует иметь в виду, что емкость аккумулятора сильно зависит от тока разряда. При быстрой разрядке (5-10 минут) аккумулятор выдает всего 20-30% от номинальной емкости.
Так, если производителем приводится время автономной нагрузки в 5 минут при нагрузке 200 Вт, то при вдесятеро меньшей нагрузке (20 Вт) время автономной работы будет не 50 минут, а около двух часов, потому что емкость при разряде такой продолжительности будет примерно вдвое больше. Максимальная (100%) емкость аккумуляторной батареи достигается при продолжительности разряда в 20 часов и более, это следует учитывать, если предполагается длительная работа оборудования от ИБП.
«Бесперебойники», рассчитанные на продолжительную автономную работу, часто имеют возможность подключения дополнительных батарей. Это позволяет набрать емкость, необходимую для поддержания работы потребителей в течение необходимого времени.
Варианты выбора источников бесперебойного питания.
Для защиты от кратковременных падений напряжения маломощных потребителей (роутеров, модемов, точек доступа) предназначены ИБП с «евророзетками» мощностью до 400 ВА.
ИБП мощностью 500-1000 ВА сможет «поддержать на плаву» простой офисный компьютер в течение времени, достаточного для сохранения всех открытых документов.
ИБП с «холодным стартом» способен обеспечить автономное питание электроприборов в условиях полного отсутствия питающей сети.
Если вам важно стабильное электропитание на выходе «бесперебойника» по минимальной цене, выбирайте среди линейно-интерактивных ИБП.
ИБП с двойным преобразованием гарантируют высокое качество питающего напряжения и обеспечивают полное отсутствие переходных процессов при пропадании внешнего питания.