Что такой дополнительный минор матрицы
Что такой дополнительный минор матрицы
.
Пример. .
Определение 3. Алгебраическим дополнением A ij к элементу a ij квадратной матрицы называется число A ij =
.
Пример. Найдем алгебраическое дополнение к элементу a 33.
.
Теорема 1. Определитель равен сумме попарных произведений элементов любой строки на их алгебраические дополнения.
Теорема 2. Сумма попарных произведений элементов любой строки определителя на алгебраические дополнения к соответствующим элементам другой строки равна нулю.
Вычисление определителей порядка n >3 сводится к вычислению определителей второго и третьего порядка с помощью теоремы 1 и свойства 5 определителя.
по первому столбцу
Перед разложением определителя для удобства получают в одном из столбцов нули. Это сокращает объемы вычислений. Для этого используют пятое свойство определителя. Одну из строк умножают на некоторые числа и складывают с другими строками.
Вопрос 6) Дополнительные миноры и алгебраические дополнения элементов матрицы.
Опр. Минором порядка к матрицы А m × n называется определитель к-го порядка, полученный из матрицы А вычеркиванием (т-к) строк и (п-к) столбцов ( ).
Опр. Алгебраическим дополнением Aij элемента aij квадратной матрицы А п-го порядка называется число
.
Вопрос 7) Ранг матрицы и способы его нахождения.
В математических исследованиях имеет большое значение понятие ранга матрицы.
Пусть дана произвольная матрица размера . Минором к-го порядка Мк называют определитель порядка к (
), составленный из элементов, расположенных на пересечении любых к строк и к столбцов. Для данной матрицы можно составить
миноров к-го порядка.
Опр. Рангом матрицы r ( A ) называется наивысший порядок отличных от нуля миноров этой матрицы.
Очевидно, что r ( A ) . Для квадратной матрицы п –го порядка r ( A )= n тогда и только тогда, когда матрица А – невырожденная.
Если все миноры к-го порядка данной матрицы равны нулю, то равны нулю и все миноры более высоких порядков (почему? ). Поэтому, если среди миноров к-го порядка есть отличный от нуля минор Мк, а все миноры порядка к+1 равны нулю, то ранг такой матрицы равен к. Это свойство дает нам способ вычисления ранга матрицы.
Опр. Отличный от нуля минор порядка r = r ( A ) называется базисным минором матрицы А, а строки и столбцы в которых он расположен, называются базисными строками (столбцами).
Любая строка матрицы является линейной комбинацией ее базисных строк. (То же верно для столбцов). Ранг матрицы равен максимальному числу линейно независимых строк (столбцов) матрицы.
При элементарных преобразованиях ранг матрицы не меняется. Можно доказать, что посредством элементарных преобразований любая ненулевая матрица А приводится к треугольной матрице В:
В матрице В вычеркиваем строки, все элементы которых равны нулю, что не изменяет ранга матрицы. Ранг полученной матрицы, состоящей из r строк, равен r, так как минор порядка r в левом верхнем углу отличен от нуля. Тогда и r(В) = r, т.е. ранг треугольной матрицы равен числу ее ненулевых строк. Матрица В получена из А путем элементарных преобразований, поэтому r(А) = r.
Вывод: для того, чтобы найти ранг матрицы, необходимо с помощью элементарных преобразований привести ее к треугольному виду и подсчитать количество ненулевых строк.
Вопрос 8) Определители, их свойства.
Для любой квадратной матрицы А существует число или det A, называемое определителем, характеризующее эту матрицу.
Так, определителем первого порядка называется само число а11.
Определителем квадратной матрицы А второго порядка называется число, определяемое по формуле: .
Правило вычисления этого определителя легко запомнить визуально: из произведения элементов главной диагонали вычитается произведение элементов побочной диагонали матрицы.
Определителем квадратной матрицы А третьего порядка называется число, определяемое по формуле:
Это число представляет собой сумму 3!=6 слагаемых, в которые входят по одному элементу из каждой строки и столбца. Запомнить правило вычисления этого определителя можно, пользуясь схемой, называемой правилом треугольников или правилом Сарруса.
Вычисление определителей порядка больше 3 основано на применении свойств определителей.
Свойства определителей.
1. При транспонировании величина определителя не меняется.
Следствие. Строки и столбцы в определителе обладают одинаковыми свойствами.
2. Если все элементы строки определителя умножить на одно число, то значение определителя умножится на это число.
Следствие. Постоянный множитель строки можно вынести за знак определителя.
3. При перестановке двух строк определитель меняет знак на противоположный.
Следствие. Определитель, имеющий равные или пропорциональные строки, равен нулю.
4. Если каждый элемент строки определителя представлен в виде суммы, то определитель равен сумме определителей, у которых в данной строке стоят слагаемые.
5. Определитель произведения двух квадратных матриц равен произведению определителей этих матриц.
6. Определитель треугольной (в т.ч. диагональной) матрицы равен произведению элементов главной диагонали.
7. Определитель равен сумме произведений элементов любой строки на их алгебраические дополнения (т. Лапласа):
— разложение по i-й строке,
— разложение по j-му столбцу.
8. Сумма произведений элементов какой-либо строки определителя на алгебраические дополнения элементов другой строки равна нулю.
при
.
9. Определитель матрицы не изменится, если к элементам одной его строки прибавить элементы другой строки, умноженной на одно и то же число.
Дата добавления: 2020-01-07 ; просмотров: 262 ; Мы поможем в написании вашей работы!
Алгебраические дополнения и миноры. Виды миноров и алгебраических дополнений.
В данной теме рассмотрим понятия алгебраического дополнения и минора. Изложение материала опирается на термины, пояснённые в теме «Матрицы. Виды матриц. Основные термины». Также нам понадобятся некоторые формулы для вычисления определителей. Так как в данной теме немало терминов, относящихся к минорам и алгебраическим дополнениям, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.
Этот минор несложно вычислить, используя формулу №2 из темы вычисления определителей второго и третьего порядков:
Чтобы найти значение данного минора используем формулу №1 из темы вычисления определителей второго и третьего порядков:
Например, рассмотрим такую матрицу:
Запишем для неё какой-либо минор третьего порядка. Чтобы записать минор третьего порядка нам потребуется выбрать какие-либо три строки и три столбца данной матрицы. Например, возьмём строки №2, №4, №6 и столбцы №1, №2, №4. На пересечении этих строк и столбцов будут располагаться элементы требуемого минора. На рисунке элементы минора показаны синим цветом:
Миноры первого порядка находятся на пересечении одной строки и одного столбца, т.е. миноры первого порядка равны элементам заданной матрицы.
Естественно, что мы могли взять иные строки и столбцы, – например, с номерами 2 и 4, получив при этом иной главный минор второго порядка.
Для примера рассмотрим такую матрицу:
Найдём значение этого минора, используя формулу №2 из темы вычисления определителей второго и третьего порядков:
Данный пример, конечно, тривиальный, так как его цель – наглядно показать суть базисного минора. Вообще, базисных миноров может быть несколько, и обычно процесс поиска такого минора куда сложнее и объёмнее.
Введём ещё одно понятие – окаймляющий минор.
Для примера обратимся к такой матрице:
Запишем минор второго порядка, элементы которого расположены на пересечении строк №2 и №5, а также столбцов №2 и №4. Эти элементы выделены в матрице красным цветом:
Вновь вернёмся к квадратным матрицам. Введём понятие дополнительного минора.
Для примера рассмотрим квадратную матрицу пятого порядка:
Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
Что такой дополнительный минор матрицы
Матрицей называют прямоугольную таблицу, заполненную числами. Важнейшие характеристики матрицы – число строк и число столбцов. Если у матрицы одинаковое число строк и столбцов, ее называют квадратной. Обозначают матрицы большими латинскими буквами.
Сами числа называют элементами матрицы и характеризуют их положением в матрице, задавая номер строки и номер столбца и записывая их в виде двойного индекса, причем вначале записывают номер строки, а затем столбца. Например, a14 есть элемент матрицы, стоящий в первой строке и четвертом столбце, a32 стоит в третьей строке и втором столбце.
Главной диагональю квадратной матрицы называют элементы, имеющие одинаковые индексы, то есть те элементы, у которых номер строки совпадает с номером столбца. Побочная диагональ идет «перпендикулярно» главной диагонали.
Особую важность представляют собой так называемые единичные матрицы. Это квадратные матрицы, у которых на главной диагонали стоят 1, а все остальные числа равны 0. Обозначают единичные матрицы E. Матрицы называют равными, если у них равны число строк, число столбцов, и все элементы, имеющие одинаковые индексы, равны. Матрица называется нулевой, если все ее элементы равны 0. Обозначается нулевая матрица О.
Простейшие действия с матрицами
1. Умножение матрицы на число. Для этого необходимо умножить каждый элемент матрицы на данное число.
2. Сложение матриц. Складывать можно только матрицы одинакового размера, то есть имеющие одинаковое число строк и одинаковое число столбцов. При сложении матриц соответствующие их элементы складываются.
4. Умножение матриц. Для произведения матриц существуют следующие свойства:
Свойства произведения матриц:
Определитель матрицы
Определителем (детерминантом) квадратной матрицы А называется число, которое обозначается detA, реже |A| или просто Δ, и вычисляется определённым образом. Для матрицы размера 1х1 определителем является сам единственный элемент матрицы. Для матрицы размера 2х2 определитель находят по следующей формуле:
Миноры и алгебраические дополнения
Рассмотрим матрицу А. Выберем в ней s строк и s столбцов. Составим квадратную матрицу из элементов, стоящих на пересечении полученных строк и столбцов. Минором матрицы А порядка s называют определитель полученной матрицы.
Рассмотрим квадратную матрицу А. Выберем в ней s строк и s столбцов. Дополнительным минором к минору порядка s называют определитель, составленный из элементов, оставшихся после вычеркивания данных строк и столбцов.
Вычисление определителя матрицы через алгебраические дополнения
Рассмотрим квадратную матрицу А. Для вычисления ее определителя необходимо выбрать любую ее строку или столбец и найти произведения каждого элемента этой строки или столбца на алгебраическое дополнение к нему. А дальше надо просуммировать все эти произведения.
Расчет алгебраического дополнения может сводиться к расчету определителя размером более чем 2х2. В этом случае такой расчет также нужно проводить через алгебраические дополнения, и так далее до тех пор, пока алгебраические дополнения, которые нужно будет считать, не станут размером 2х2, после чего воспользоваться формулой выше.
Обратная матрица
Рассмотрим квадратную матрицу А. Матрица A –1 называется обратной к матрице А, если их произведения равны единичной матрице. Обратная матрица существует только для квадратных матриц. Обратная матрица существует, только если матрица А невырождена, то есть ее определитель не равен нулю. В противном случае обратную матрицу посчитать невозможно. Для построения обратной матрицы необходимо:
Таким образом, в случае, если матрица А имеет размер 3х3, обратная к ней матрица имеет вид:
Минор и алгебраическое дополнение матрицы
Что такое минор и алгебраическое дополнение матрицы
Минор Mij к элементу aij определителя n-го порядка является определителем (n−1)-го порядка, получающимся из начального определителя после исключения i-той строки и j-того столбца.
Исходя из определения, минор представляет собой определитель, который остается после того, как вычеркнуть конкретную строку и конкретный столбец. К примеру, M12 будет получен в результате устранения первой строки и второго столбца. Для того чтобы получить M34 следует вычеркнуть третью строку и четвертый столбец.
Найти миноры с помощью вычерков можно, следуя алгоритму:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Порядок действия при определении алгебраического дополнения следующий:
Общие понятия, основные формулы
Предположим, что существует какая-то квадратная матрица или квадратная матрица n-го порядка:
\(Минор \ M_
В качестве доказательства можно рассмотреть такую квадратную матрицу четвертого порядка:
Данный минор достаточно просто рассчитать с помощью теоремы для вычисления определителей второго и третьего порядков. Расчет будет следующий:
Таким образом, минор элемента \(a_<32>\) равен 579, то есть \(M_<32>=579\)
Нередко в тематической литературе вместо «минор элемента матрицы» употребляют понятие «минор элемента определителя». Смысл выражения сохраняется. Таким образом, для вычисления минора элемента \(a_
В качестве примера можно рассчитать минор элемента \(a_<12>\) определителя:
Вычислить минор целесообразно с помощью формулы для расчета определителей второго и третьего порядков:
В результате минор элемента \(a_<12>\) составит 83, то есть \(M_<12>=83\)
где \(M_
В качестве примера можно рассчитать алгебраическое дополнение элемента \(a_<32>\) матрицы:
Как правило, при определении алгебраических дополнений не требуется выполнять отдельный расчет минора перед вычислением непосредственно дополнения. К примеру, если требуется определить \(A_<12>\) при условии, что:
Необходимо записать справедливое равенство:
Рассчитать \(M_<12>\) легко с помощью вычерка первой строки и второго столбца матрицы А. Поэтому нет необходимости вводить лишнее обозначение для минора. Достаточно сразу записать уравнение для алгебраического дополнения \(A_<12>\) :
Решение миноров и алгебраических дополнений
Миноры и алгебраические дополнения встречаются в задачах не только с квадратными матрицами, но и прямоугольными. Во втором случае матрицы отличаются тем, что количество строк не обязательно совпадает с количеством столбцов. К примеру, записана матрица:
В рассматриваемой матрице m строк и n столбцов. Минор k-го порядка матрицы \(A_
В качестве примера можно рассмотреть матрицу:
Можно записать для нее какой-то минор третьего порядка. Для этого следует отобрать какие-то три строки и три столбца рассматриваемой матрицы. Выберем для расчета строки №2, №4, №6 и столбцы №1, №2, №4. Данные строки и столбцы будут пересекаться в том месте, где расположены элементы искомого минора.
\(M=\left|\begin
Расположение миноров первого порядка будет совпадать с пересечением одной строки и одного столбца. Таким образом, выводим равенство миноров первого порядка элементам рассматриваемой матрицы.
Минор k-го порядка матрицы \(A_
Главные диагональные элементы представляют собой такие элементы матрицы, которые содержат индексы, равные \( a_<11>, a_<22>, a_<33>\) и так далее. К примеру, матрица А, которая рассматривается в примере, содержит элементы \(a_<11>=-1, a_<22>=7, a_<33>=18, a_<44>=8.\)
В том случае, когда в матрице А исключены строки и столбцы, которые соответствуют номерам 1 и 3, их пересечение будет совпадать с элементами минора второго порядка. Главная диагональ этого минора будет содержать лишь диагональные элементы матрицы А. К примеру, такими элементами являются элементы \( a_<11>=-1\) и \(a_<33>=18\) матрицы A. Таким образом, главный минор второго порядка будет равен:
В том случае, если выбрать строки и столбцы с другими номерами, получится другой главный минор второго порядка.
Можно предположить, что какой-то минор M k-го порядка матрицы A_
В качестве примера можно рассмотреть следующую матрицу:
Запись минора рассматриваемой матрицы с элементами, распложенными на месте, где пересекаются строки №1, №2, №3 и столбцы №1, №3, №4, представляет собой минор третьего порядка и имеет следующий вид:
Рассчитать значение искомого минора можно, используя правило для расчета определителей второго и третьего порядков:
Далее можно попытаться записать какой-либо минор с порядком выше, чем 3. Для составления минора четвертого порядка необходимо воспользоваться четвертой строкой, элементы которой имеют нулевые значения. Исходя из этого, можно заключить, что любой минор четвертого порядка обладает нулевой строкой. Таким образом, значение каждого из миноров четвертого порядка равно нулю. Записать миноры пятого порядка и выше не представляется возможным по причине наличия в матрице А всего четырех строк.
По результатам вычислений удалось определить минор третьего порядка с ненулевым значением. Одновременно с этим, миноры более высоких порядков равны нулю, из чего можно сделать вывод: рассматриваемый минор является базисным. Строки №1, №2, №3 матрицы А, которые содержат элементы данного минора, являются базисными строками, а столбцы №1, №3, №4 матрицы А — базисными столбцами.
Пример, который был рассмотрен, является тривиальным. Однако с его помощью удобно продемонстрировать смысл базисного минора. В реальных условиях базисных миноров может быть более одного, а решение подобных задач на нахождение подобного минора существенно сложнее и объемнее.
Еще одним важным термином является окаймляющий минор. Для раскрытия понятия можно предположить, что какой-то минор k-го порядка M матрицы \(A_
В качестве примера можно рассмотреть матрицу:
В первую очередь нужно записать минор второго порядка с элементами, расположенными в месте, где пересекаются строки №2 и №5, а также столбцы №2 и №4.
\(M=\left|\begin
К комплекту строк с элементами минора М требуется прибавить одну строку №1, а к столбцам — столбец №5. В результате манипуляций получится новый минор M’ третьего порядка с элементами, расположенными там, где пересекаются строки №1, №2, №5 и столбцы №2, №4, №5.
Минор M’ представляет собой окаймляющий минор для минора M. Таким же образом, путем добавления к комплекту строк с элементами минора М строки №4, а к совокупности столбцов — столбца №3, можно записать минор M», то есть минор третьего порядка.
Минор M», аналогично предыдущему, представляет собой окаймляющий минор для минора M.
Предположим, что существует какой-то минор M k-го порядка матрицы \(A_
Определитель (n-k)-го порядка с элементами, полученными из матрицы A путем исключения строк и столбцов, которые содержали минор M, называется минором, дополнительным к минору M.
В качестве примера можно рассмотреть квадратную матрицу пятого порядка:
В рассматриваемой матрице можно выбрать строки №1 и №3, столбцы №2 и №5. Пересечение данных строк и столбцов будет совпадать с элементами минора М второго порядка.
Далее следует исключить из матрицы А строки №1 и №3, а также столбцы №2 и №5. На пересечении данных компонентов расположены элементы минора М. Элементы, которые остались нетронутыми, сформируют минор M’.
Минор M’ с порядком, соответствующим 5-2=3, представляет собой минор, являющийся дополнительным к минору M.
Запись алгебраического дополнения к минору M квадратной матрицы \(A_
В данном случае \alpha является суммой номеров строк и столбцов матрицы A, содержащих элементы минора M, а M’ является дополнительным к минору M. Термин «алгебраическое дополнение к минору M», как правило, формулируют таким образом: «алгебраическое дополнение минора M».
В качестве примера можно рассмотреть матрицу А. Ранее для рассматриваемой матрицы был определен в ходе расчетов минор второго порядка:
Дополнительным к данному минору является такой минор третьего порядка:
В качестве обозначения алгебраического дополнения минора M целесообразно использовать: M^*
Исходя из определения, получим:
Параметр \alpha представляет собой сумму номеров строк и столбцов, которым соответствует минор М. Расположение данного минора соответствует пересечению строк №1, №3 и столбцов №2, №5. Таким образом:
В результате можно записать:
Благодаря формуле для расчета определителей второго и третьего порядков, представляется возможным вычислить алгебраическое дополнение: