Эсппзу что это такое в автомобиле
ПРОГРАММИРОВАНИЕ МИКРОКОНТРОЛЛЕРОВ: ЕЕПРОМ
Забросил я уроки для начинающих, сегодня поговорим о EEPROM — энергонезависимой памяти.
Эта память одно из главных составляющих в функционале поделок на микроконтроллерах, любой начинающий микроконтроллерщик подходит к этапу освоения этой энергонезависимой памяти. Оно и ежу понятно, что сохранять настройки очень часто надо, нужно и без этого нельзя.
В даташитах все рассусолено сухим техническим языком про особенности работы еепром, я же остановлюсь на основополагающих правилах использования этой памяти, правильную на мой взгляд.
Объявляется еепром так же как и переменная, работают с еепром так же как с переменной, кроме некоторых но. Пример (Code Vision AVR):
unsigned char a; // объявляем беззнаковую переменную размером 8 бит
unsigned char eeprom eea; // объявляем «переменную» в еепром такого же типа, этого достаточно, всю остальную работу делает компилятор.
Переменную я обозвал в кавычках, ибо с ней можно обращаться как с обычной переменной, а в остальном она ведет себя по другому:
1. — значение хранимое в ЕЕПРОМ по умолчанию равно максимально возможному числу, в нашем случае после объявления в eea лежит число 255 или оно же 0xFF или оно же 0b11111111.
2- количество циклов стирания-записи у памяти ЕЕПРОМ относительно мало, поэтому нужно максимально ограничивать число записей в алгоритме программы.
Вот поучительная история про то, как фирма BLAUPUNKT лоханулась и проигнорировала второй пункт: www.audi.org.ua/materials/2954.html
3. Память ЕЕПРОМ самый тормозной тип данных, это нужно учитывать. Особенно при записи в ЕЕПРОМ. Можно получить каку, например, запихнув обработку еепром в прерываниях. В особо ответственных моментах можно использовать флаги состояния памяти ЕЕПРОМ, бывает очень полезно.
После обявления еепром и переменной я делаю команду присвоения числа из еепром в переменную, до начала основного цикла и как правило до начала работы прерываний:
После этого я верчу как хочу эту переменную, пишу в нее, читаю, используя ее в алгоритме и в нужный момент, когда нужно сохранить делаю так, чтоб данные закатились из этой переменной обратно в ЕЕПРОМ единожды:
Вот пример куска кода записи в ЕЕПРОМ:
unsigned char a; // объявляем беззнаковую переменную размером 8 бит
unsigned char eeprom eea; // объявляем еепром такого же типа,
unsigned char trig; // объявляем переменную, которая будет помнить, что кнопка нажата.
Далее идет основанная часть программы void main(void), в ней :
a=eea; // загоняем данные в с еепром в переменную
Далее идет главный цикл while(1) и в теле цикла:
if(key==1) // если кнопка настройки нажата, то:
<
trig=1; // включаем триггер, который запоминает, что кнопка нажата
a*b+b^2 ; //тут что то делаем нужное, когда кнопка нажата
>
else // если кнопка отжата
<
LED=1 ; //тут что то делаем нужное, когда кнопка отжата
if(trig) //если кнопка отжата и триггер включен, то:
<
eea=a; // пишем переменную а в еепром
trig=0; // сбрасываем триггер
>
>
Запись в ЕЕПРОМ срабатывает по отжатию кнопки единожды, когда триггер равен единице.
Эсппзу что это такое в автомобиле
Модуль управления двигателем (ECM) взаимодействует с многими компонентами и системами, влияющими на токсичность выбросов, и контролирует ухудшение состояния этих компонентов и систем. Система бортовой диагностики OBD II контролирует производительность системы и устанавливает диагностический код неисправности (DTC), если производительность системы ухудшается.
Работа сигнализатора неисправности (MIL) и сохранение кода неисправности определяется типом кода неисправности. Диагностический код относится к типу «A» и «B», если он указывает на неисправность, влияющую на токсичность отработавших газов. Не связанные с токсичностью отработавших газов коды неисправности относятся к типу «C».
Модуль ECM находится в моторном отсеке. Контроллер ЭСУД является управляющим центром системы управления двигателем. Контроллер ЭСУД управляет следующими компонентами:
Контроллер ЭСУД непрерывно контролирует данные от различных датчиков и прочих источников информации и управляет системами, влияющими на характеристики автомобиля и токсичность выхлопных газов. Кроме того, контроллер ЭСУД выполняет диагностические проверки различных частей системы. Модуль ECM может распознавать неисправности в работе и зажигать для водителя лампу индикатора неисправности (MIL). Если модуль ECM обнаружил неисправность, он сохраняет код DTC. Зона условий определяется конкретным установленным кодом DTC. Это помогает технику при выполнении ремонтов.
Функционирование контроллера ЭСУД
Модуль управления двигателем (ECM) может подавать на различные датчики или выключатели питающее напряжение 5 или 12 Вольт. Это выполняется с помощью резисторов, соединенных с плюсом стабилизированного источника питания внутри модуля ECM. В некоторых случаях даже обычный используемый в мастерских вольтметр не даст точного показания, поскольку сопротивление очень мало. Поэтому для обеспечения точного измерения напряжения требуется цифровой мультиметр со входным импедансом не менее 10 МОм.
Модуль управления двигателем ECM управляет выходными схемами и контролирует соединение с «массой» или с цепью питания с помощью транзисторов или устройства, называемого «модуль выходного формирователя».
ЭСППЗУ
Электрически-стираемое программируемое ПЗУ (ЭСППЗУ) представляет собой постоянное запоминающее устройство, которое физически входит в состав модуля управления двигателем (ECM), и содержимое которого можно стирать электронным способом. ЭСППЗУ содержит программу и калибровочную информацию, которая требуется модулю ECM для управления работой силовой трансмиссии.
Для перепрограммирования модуля ECM требуется специальное оборудование, а также надлежащая программа и калибровочные данные для конкретного автомобиля.
Операции, выполняемые ЕСМ по умолчанию
Диагностический прибор может контролировать некоторые соленоиды, клапаны, двигатели и реле. Выходные органы управления могут выбираться с использованием специальных функций диагностического прибора. В некоторых режимах работы автомобиля некоторые выходные органы управления могут отключаться модулем управления двигателя (ЕСМ).
Диагностический разъем (DLC)
Разъем канала передачи данных (DLC) имеет 16 контактов, он позволяет технику получить доступ к последовательным данным, оказывающим помощь при диагностике. Этот разъем позволяет технику использовать сканер для контроля различных параметров последовательных данных и для отображения сведений по диагностическим кодам неисправности (DTC). Разъем канала передачи данных (DLC) располагается в салоне автомобиля под приборной панелью со стороны водителя.
Сигнализатор неисправности (MIL)
Контрольная лампа неисправности (MIL) расположена на комбинации приборов или в информационном центре водителя. Управление лампой MIL осуществляет модуль управления двигателем (ECM); лампа загорается, когда модуль ECM обнаруживает состояние, которое отрицательно сказывается на токсичности выхлопных газов автомобиля.
Меры предосторожности при техническом обслуживании модуля управления двигателем ECM
Модуль управления двигателем (ECM) конструктивно может выдерживать обычные токи, потребляемые нагрузками при работе автомобиля. Однако следует соблюдать осторожность, чтобы не создавать перегрузки в этих цепях. При проверке отсутствия обрывов или коротких замыканий не заземлять и не подавать напряжения в любую из цепей модуля управления двигателем (ECM) без указаний на выполнение таких операций со стороны диагностической процедуры. Проверку таких цепей следует осуществлять с помощью цифрового мультиметра.
Электрооборудование, дополнительно устанавливаемое на автомобиль после его продажи (вспомогательное), и вакуумное оборудование
Осторожно: Не присоединяйте к этому автомобилю дополнительные вакуумные устройства. Дополнительные вакуумные устройства могут повредить части и системы автомобиля.
Осторожно: Подключите все дополнительное электрически управляемое оборудование к батарее 12 В (питание и масса) электрической системы автомобиля, чтобы предотвратить повреждение автомобиля.
Дополнительное электрооборудование, даже если его устанавливают в соответствии с настоящими строгими требованиями, все же может приводить к неисправностям в системе силовой трансмиссии. Дополнительным также считается оборудование, которое не соединено с электрической системой автомобиля, например, переносные телефоны и радиоприемники. Поэтому при определении причин любой неисправности трансмиссии необходимо в первую очередь снять или отключить все электрическое оборудование, установленное на автомобиль после его продажи. После выполнения этой операции, если проблема по-прежнему не устранена, ее следует искать обычным способом.
Повреждение вследствие электростатического разряда (ESD)
Примечание: Во избежание возможного повреждения модуля управления двигателем (ECM) вследствие электростатического разряда запрещается прикасаться к контактам разъемов этого модуля.
Электронные компоненты, которые используются в системах управления, часто проектируют так, чтобы они работали при очень низком напряжении. Электронные компоненты стойкие к повреждению электростатическими разрядами. Статический электрический заряд напряжением менее 100 Вольт может вывести из строя некоторые электронные компоненты. Для сравнения человек начинает ощущать разряды статического электричества с напряжения 4 000 В.
Электростатический заряд может возникать на теле человека несколькими способами. Наиболее общие способы: заряд трением и наведенный заряд. Например, заряд трением на теле человека возникает при его трении о сиденье автомобиля.
Наведение заряда происходит, когда человек в хорошо изолированной обуви стоит вблизи сильно заряженного объекта и кратковременно прикасается к заземлению. Заряды одинаковой полярности взаимно отталкиваются, что приводит к сильному заряду человека зарядом противоположной полярности. Статические заряды могут приводить к повреждениям, поэтому, важно соблюдать осторожность при обращении с электронными компонентами и при их проверке.
Наклейка с информацией о контроле токсичности выхлопных газов
Наклейка с информацией о контроле токсичности выхлопных газов под капотом содержит важную информацию о параметрах токсичности и о процедурах их регулировки. Указывается год выпуска автомобиля, завод-изготовитель двигателя, рабочий объем двигателя в литрах, класс автомобиля и тип топливной системы. Здесь также представлена иллюстрация токсичных компонентов и схема вакуумного шланга.
Такая наклейка находится в моторном отсеке любого автомобиля компании General Motors. Если наклейка потерялась, ее можно заказать в отделе запчастей компании GM (GMSPO).
Проверка оборудования под капотом
Примечание: Эта проверка очень важна, поэтому ее следует проводить аккуратно и тщательно.
Произвести внимательную проверку оборудования под капотом при выполнении любой диагностической процедуры или во время диагностики причины непрохождения теста на токсичность выхлопных газов. Такая проверка часто может приводить к устранению неисправного состояния без выполнения последующих шагов. При выполнении проверки следует соблюдать указанные ниже рекомендации:
• | Проверить все вакуумные шланги; они должны быть надлежащим образом проложены, не должны иметь проколов, порезов или отсоединений. |
• | Проверить все провода в моторном отсеке в соответствии с указанными ниже состояниями: |
Необходимые базовые знания
Осторожно: Незнание основных сведений о данной силовой трансмиссии при выполнении диагностических процедур может привести к неверной диагностике или к повреждению компонентов силовой трансмиссии. Запрещается проводить диагностику данной силовой трансмиссии, не зная основных сведений о ее конструкции.
Чтобы эффективно пользоваться сведениями из этого раздела руководства по техобслуживанию, требуются основные знания ручного инструмента.
Вы должны быть знакомы с основами работы двигателей и диагностики электрических цепей, чтобы пользоваться этим разделом инструкции по техническому обслуживанию.
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
EEPROM (Electrically Erasable Programmable Read-Only Memory)
На сегодняшний день классическая двухтранзисторная технология EEPROM практически полностью вытеснена флеш-памятью типа NOR. Однако название EEPROM прочно закрепилось за сегментом памяти малой ёмкости независимо от технологии.
Содержание
История
Элай Харари в 1977 году создал EEPROM с помощью автоэлектронной эмиссии [Источник 2] через плавающий затвор. В 1978 году Джордж Перлегос в Intel разработал процессор Intel 2816, который был построен на более ранней технологии EPROM, но использовал тонкий подзатворный окисленный слой, позволяющий чипу стереть собственные байты без УФ-источника. Перлегос и другие позже использовали технологию, которая подразумевала использование на устройстве конденсаторов для обеспечения необходимого напряжения для программирования микросхемы. [1] [2]
Принцип действия
Принцип работы EEPROM основан на изменении и регистрации электрического заряда в изолированной области (кармане) полупроводниковой структуры. [3]
Ячейка памяти EEPROM представляет собой транзистор, в котором затвор выполняется из поликристаллического кремния. Затем этот затвор окисляется и в результате он будет окружен оксидом кремния — диэлектриком с прекрасными изолирующими свойствами. Изменение заряда («запись» и «стирание») производится приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта туннелирования электронов в карман при записи применяется небольшое ускорение электронов путём пропускания тока через канал полевого транзистора (явление инжекции горячих носителей). После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на его плавающем затворе может храниться десятки лет. Чтение выполняется полевым транзистором, для которого карман выполняет функцию затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора, что и регистрируется цепями чтения.
Ранее подобная конструкция ячеек применялась в ПЗУ с ультрафиолетовым стиранием (EPROM).Сейчас особенностью классической ячейки EEPROM можно назвать наличие второго транзистора, который помогает управлять режимами записи и стирания. Стирание информации производится подачей на программирующий затвор напряжения, противоположного напряжению записи. В отличие от ПЗУ с ультрафиолетовым стиранием, время стирания информации в EEPROM памяти составляет около 10 мс. Структурная схема энергонезависимой памяти с электрическим стиранием не отличается от структурной схемы масочного ПЗУ. Единственное отличие — вместо плавкой перемычки используется описанная выше ячейка.
Некоторые реализации EEPROM выполнялись в виде одного трёхзатворного полевого транзистора (один затвор плавающий и два обычных). Эта конструкция снабжается элементами, которые позволяют ей работать в большом массиве таких же ячеек. Соединение выполняется в виде двумерной матрицы, в которой на пересечении столбцов и строк находится одна ячейка. Поскольку ячейка EEPROM имеет третий затвор, то, помимо подложки, к каждой ячейке подходят 3 проводника (один проводник столбцов и 2 проводника строк).
Интерфейс
Устройства EEPROM используют последовательный или параллельный интерфейс для ввода/вывода информации.
Устройства с последовательным интерфейсом
Каждое устройство EEPROM, как правило, имеет свой код операций для выполнения различных функций. Функции для SPI EEPROM могут быть:
Ряд других операций, которые поддерживают некоторые EEPROM устройства:
Устройства с параллельным интерфейсом
Параллельные устройства EEPROM обычно содержат в себе 8-битную шину данных и адресную шину достаточного объёма для покрытия всей памяти. Большинство таких устройств имеют защиту записи на шинах и возможность выбора чипа. Некоторые микроконтроллеры содержат в себе такие интегрированные EEPROM. Операции на таких устройствах проще и быстрее в сравнении с последовательным интерфейсом EEPROM, но за счет того, что для его функционирования требуется большое количество точек вывода (28pin и больше), параллельная память EEPROM теряет популярность уступая место памяти типа Flash и последовательной EEPROM.
Другие устройства
Память EEPROM используется для функционирования и в других видах продуктов. Продукты, такие как часы реального времени, цифровые потенциометры, цифровые датчики температуры, в частности, могут иметь небольшое количество EEPROM для хранения информации о калибровке или другие данные, которые должны быть доступны в случае потери питания. Он также был использован на игровых картриджах, чтобы сохранить игровой прогресс и настройки, до использования внешней и внутренней флэш-памяти.
Режимы отказа
Родственные типы памяти
Флэш-память является более поздней формой EEPROM. В промышленности, существует конвенция, чтобы зарезервировать термин EEPROM для побайтно стираемой памяти относительно поблочно стираемой флэш-памяти. EEPROM занимает большую площадь кристалла, чем флэш-память для той же мощности, потому что каждая ячейка обычно требует чтения, записи и стирания, в то время как для стирания Flash схемы памяти используются большие блоки ячеек.
Новые технологии энергонезависимой памяти, такие как в FeRAM и MRAM медленно заменяют EEPROM в некоторых устройствах, но, как ожидается, останется небольшая доля рынка для EEPROM в обозримом будущем.
Сравнение EPROM, EEPROM и Flash
Главными отличиями данных типов памяти являются: программирование и стирание данных с устройства. EEPROM может быть запрограммирован, а данные устройства удалены с помощью автоэлектронной эмиссии.
EPROM же, напротив, использует инжекцию горячих носителей [Источник 6] на плавающем затворе. Стирание осуществляется с помощью ультрафиолетового источника света, хотя на практике многие чипы упакованы в пластик, который является непроницаемым для ультрафиолета, делая их «однократно программируемыми».
Большинство устройств с Flash памятью представляет собой гибрид программирования с помощью инжекции горячих носителей и стирания с помощью автоэлектронной эмиссии.
Готовимся копать EEPROM ЭБУ
Сегодня первый удачный день экспериментов с «невиданной фигней»))
Если вы не увидели связи между тем и тем, то заваривайте чаёк, постараюсь рассказать о своих планах.
Знаете почему нельзя просто так взять и поставить себе ЭБУ от другой точно такой же машины?
Потому, что не даст иммобилайзер.
Иммобилайзер в реализации крайслера — это не просто коробочка, которая считывает ключ зажигания и разрешает запуск двигателя. Он как Агент Смит из Матрицы прописывает свой уникальный код в разные блоки управления, чтобы те стали единым целым. И да, в блок управления двигателя он себя тоже прописывает. Именно поэтому система отторгнет чужой ЭБУ, считав с него код от чужого иммо, и заблокирует его после нескольких неудачных попыток завестись. И именно поэтому на рынке предлагается приобретать комплект с ключами, личинками, новым замком зажигания и блоком SKIM. Решение хоть и рабочее, но проблемное по установке и дорогое. К тому же, в ЭБУ будет прописан чужой VIN, а это не есть хорошо (читал о случаях проверки сканером в МРЭО с последующим изъятием). Наверное это можно решить дилерским сканером или еще каким другим, но это пока не наш метод)
Гораздо привлекательней приобрести себе ЭБУ от себринга или стратуса и «подружить» его со своим авто самостоятельно. Не будем дальше тянуть кота за хвост: место, где «живет» иммо в ЭБУ давно известно — это пара микросхем EEPROM на блоке. Он там хранится в незашифрованном виде и даже без контрольных сумм в виде VIN-номера авто.
Также удалось выяснить, что в качестве этих ПЗУ используются микрухи ST M95040 или M95080. Стоят эти восьминожки каких-то смешных денег — 28 р/шт (можно взять с запасом на эксперименты)
А вот с программатором не все так просто в плане денег: профессиональные решения стоят очень не кисло. и так как я никогда не имел дела с программаторами, то мне в первых строках гугло-поиск предлагал именно их))
Совершенно случайно нашел программатор, который производит контора энтузиастов с пафосным названием «Электронные войска»)
Что ж, прикладываем к нему пустую микросхему и пробуем залить на нее дамп от Конкорда (не от самолета, конечно, от Крайслера))
…А перед этим сходим в магазин и купим кабель miniUSB! ))) Потому, что там распаян ни фига microUSB, а этот старый mini, от которого у меня уже ни устройств, ни шнуров не осталось.
ЭСППЗУ
ЭСППЗУ
Электронно-стираемое программируемое постоянное запоминающее устройство: часть интегральной схемы микропроцессора, используемая для хранения данных. Данные в ЭСППЗУ могут быть стерты электронным способом и переписаны под контролем операционной системы.
[Глоссарий терминов, используемых в платежных и расчетных системах. Комитет по платежным и расчетным системам Банка международных расчетов. Базель, Швейцария, март 2003 г.]
Тематики
Смотреть что такое «ЭСППЗУ» в других словарях:
ЭСППЗУ — электронно стираемое программируемое постоянное запоминающее устройство электрически стираемое программируемое постоянное запоминающее устройство ср. ЭРПЗУ техн. ЭСППЗУ электрически стираемое перепрограммируемое постоянное запоминающее устройство … Словарь сокращений и аббревиатур
ЭСППЗУ — EEPROM (англ. Electrically Erasable Programmable Read Only Memory, электрически стираемое перепрограммируемое ПЗУ, ЭСППЗУ). Память такого типа может стираться и заполняться данными несколько десятков тысяч раз. Используется в твердотельных… … Википедия
ЭСППЗУ — комп. электронно стираемое программируемое постоянное запоминающее устройство electronically erasable programmable read only memory (EEPROM) … Универсальный дополнительный практический толковый словарь И. Мостицкого
ЭСППЗУ — электронно стираемое программируемое постоянное запоминающее устройство … Словарь сокращений русского языка
устройство ЭСППЗУ — 01.04.07 устройство ЭСППЗУ [ EEPROM]: Электрически стираемое программируемое постоянное запоминающее устройство. Источник … Словарь-справочник терминов нормативно-технической документации
ПАМЯТИ УСТРОЙСТВА — (запоминающиеустройства) в вычислит. технике (см. Электронная вычислительная машина )устройства для записи, хранения и воспроизведения информации. В качественосителя информации может выступать физ. сигнал, распространяющийся в среде … Физическая энциклопедия
Микропрограмма SRM — Фотография SRM, загружающей aboot (загрузчик Linux) Микропрограмма SRM или SRM консоль (англ. SRM firmware, SRM console) … Википедия
ФЛЭШ-ПАМЯТЬ — (англ. flash memory, flash storage) или электрически стираемое перепрограммируемое постоянное запоминающее устройство (ЭСППЗУ, EEPROM) энергонезависимое полупроводниковое запоминающее устройство (см. ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО), выполненное в виде… … Энциклопедический словарь
PIC 16F876 — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка… … Википедия
Toshiba — (Тошиба) Компания Toshiba, её история и деятельность. Прибыль и показатели компании Toshiba. Представительство Toshiba в России. Содержание Раздел 1. История Раздел 1.1. Рост мирового гиганта Раздел 2. Деятельность фирмы Раздел 2.1. Показатели… … Энциклопедия инвестора