Что такое числа с плавающей точкой

Наглядное объяснение чисел с плавающей запятой

Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой

В начале 90-х создание трёхмерного игрового движка означало, что вы заставите машину выполнять почти не свойственные ей задачи. Персональные компьютеры того времени предназначались для запуска текстовых процессоров и электронных таблиц, а не для 3D-вычислений с частотой 70 кадров в секунду. Серьёзным препятствием стало то, что, несмотря на свою мощь, ЦП не имел аппаратного устройства для вычислений с плавающей запятой. У программистов было только АЛУ, перемалывающее целые числа.

При написании книги Game Engine Black Book: Wolfenstein 3D я хотел наглядно показать, насколько велики были проблемы при работе без плавающей запятой. Мои попытки разобраться в числах с плавающей запятой при помощи каноничных статей мозг воспринимал в штыки. Я начал искать другой способ. Что-нибудь, далёкое от Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкойи их загадочных экспонент с мантиссами. Может быть, в виде рисунка, потому что их мой мозг воспринимает проще.

В результате я написал эту статью и решил добавить её в книгу. Не буду утверждать, что это моё изобретение, но пока мне не приходилось видеть такого объяснения чисел с плавающей запятой. Надеюсь, статья поможет тем, у кого, как и у меня, аллергия на математические обозначения.

Как обычно объясняют числа с плавающей запятой

Цитирую Дэвида Голдберта (David Goldbert):

Для многих людей арифметика с плавающей запятой кажется каким-то тайным знанием.

Полностью с ним согласен. Однако важно понимать принципы её работы, чтобы полностью осознать её полезность при программировании 3D-движка. В языке C значения с плавающей запятой — это 32-битные контейнеры, соответствующие стандарту IEEE 754. Они предназначены для хранения и выполнения операций над аппроксимациями вещественных чисел. Пока я видел только такое их объяснение. 32 бита разделены на три части:

Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой
Три части числа с плавающей запятой.

Пока всё нормально. Пойдём дальше. Способ интерпретации чисел обычно объясняется с помощью такой формулы:

Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой

Именно это объяснение чисел с плавающей запятой все ненавидят.

И здесь я обычно начинаю терять терпение. Возможно, у меня аллергия на математическую нотацию, но когда я это читаю, в моём мозгу ничего не «щёлкает». Такое объяснение похоже на способ рисования совы:

Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой

Другой способ объяснения

Хоть это изложение и верно, такой способ объяснения чисел с плавающей запятой обычно не даёт нам никакого понимания. Я виню эту ужасную запись в том, что она разочаровала тысячи программистов, испугала их до такой степени, что они больше никогда не пытались понять, как же на самом деле работают вычисления с плавающей запятой. К счастью, их можно объяснить иначе. Воспринимайте экспоненту как окно (Window) или интервал между двумя соседними целыми степенями двойки. Мантиссу воспринимайте как смещение (Offset) в этом окне.

Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой
Три части числа с плавающей запятой.

Окно сообщает нам, между какими двумя последовательными степенями двойки будет число: [0,1], [1,2], [2,4], [4,8] и так далее (вплоть до [Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой,Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой]. Смещение разделяет окно на Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкойсегментов. С помощью окна и смещения можно аппроксимировать число. Окно — это отличный механизм защиты от выхода за границы. Достигнув максимума в окне (например, в [2,4]), можно «переплыть» вправо и представить число в пределах следующего окна (например, [4,8]). Ценой этого будет только небольшое снижение точности, потому что окно становится в два раза больше.

Викторина: сколько точности теряется, когда окно закрывает больший интервал? Давайте возьмём пример с окном [0,1], в котором 8388608 смещений накладываются на интервал размером 1, что даёт нам точность Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой. В окне [2048,4096] 8388608 смещений накладываются на интервал Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой, что даёт нам точность Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой.

На рисунке ниже показано, как кодируется число 6,1. Окно должно начинаться с 4 и заканчиваться следующей степенью двойки, т.е. 8. Смещение находится примерно посередине окна.

Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой
Значение 6,1 аппроксимированное с помощью числа с плавающей запятой.

Давайте возьмём ещё один пример с подробным вычислением представлением в виде числа с плавающей точкой хорошо известного всем нам значения: 3,14.

Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой

Двоичное представление с плавающей точкой числа 3,14.

То есть значение 3,14 аппроксимируется как 3,1400001049041748046875.

Соответствующее значение в непонятной формуле:

Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой

И, наконец, графическое представление с окном и смещением:

Что такое числа с плавающей точкой. Смотреть фото Что такое числа с плавающей точкой. Смотреть картинку Что такое числа с плавающей точкой. Картинка про Что такое числа с плавающей точкой. Фото Что такое числа с плавающей точкой

Окно и смещение числа 3,14.

Интересный факт: если модули операций с плавающей запятой были такими медленными, почему в языке C в результате использовали типы float и double? Ведь в машине, на которой изобретался язык (PDP-11), не было модуля операций с плавающей запятой! Дело в том, что производитель (DEC) пообещал Деннису Ритчи и Кену Томпсону, что в следующей модели он будет. Они были любителями астрономии и решили добавить в язык эти два типа.

Интересный факт: те, кому в 1991 году действительно нужен был аппаратный модуль операций с плавающей запятой, могли его купить. Единственными, кому он мог понадобиться в то время, были учёные (по крайней мере, так Intel понимала потребности рынка). На рынке они позиционировались как «математические сопроцессоры». Их производительность была средней, а цена огромной (200 долларов 1993 года — это 350 долларов в 2016 году.). В результате уровень продаж оказался посредственным.

Источник

Представление вещественных чисел

Вещественные числа обычно представляются в виде чисел с плавающей запятой. Числа с плавающей запятой — один из возможных способов представления действительных чисел, который является компромиссом между точностью и диапазоном принимаемых значений, его можно считать аналогом экспоненциальной записи чисел, но только в памяти компьютера.

Число с плавающей запятой состоит из набора отдельных двоичных разрядов, условно разделенных на так называемые знак (англ. sign), порядок (англ. exponent) и мантиссу (англ. mantis). В наиболее распространённом формате (стандарт IEEE 754) число с плавающей запятой представляется в виде набора битов, часть из которых кодирует собой мантиссу числа, другая часть — показатель степени, и ещё один бит используется для указания знака числа ( [math]0[/math] — если число положительное, [math]1[/math] — если число отрицательное). При этом порядок записывается как целое число в коде со сдвигом, а мантисса — в нормализованном виде, своей дробной частью в двоичной системе счисления. Вот пример такого числа из [math]16[/math] двоичных разрядов:

Знак
ПорядокМантисса
0000000000000000
141090

Знак — один бит, указывающий знак всего числа с плавающей точкой. Порядок и мантисса — целые числа, которые вместе со знаком дают представление числа с плавающей запятой в следующем виде:

Порядок также иногда называют экспонентой или просто показателем степени.

При этом лишь некоторые из вещественных чисел могут быть представлены в памяти компьютера точным значением, в то время как остальные числа представляются приближёнными значениями.

Более простым вариантом представления вещественных чисел является вариант с фиксированной точкой, когда целая и вещественная части хранятся отдельно. Например, на целую часть отводится всегда [math]X[/math] бит и на дробную отводится всегда [math]Y[/math] бит. Такой способ в архитектурах процессоров не присутствует. Отдаётся предпочтение числам с плавающей запятой, как компромиссу между диапазоном допустимых значений и точностью.

Содержание

Нормальная и нормализованная форма [ править ]

Типы чисел с плавающей точкой (по IEEE 754) [ править ]

Число половинной точности (Binary16, Half precision) [ править ]

Число́ полови́нной то́чности — компьютерный формат представления чисел, занимающий в памяти половину машинного слова (в случае 32-битного компьютера — [math]16[/math] бит или [math]2[/math] байта). В силу невысокой точности этот формат представления чисел с плавающей запятой обычно используется в видеокартах, где небольшой размер и высокая скорость работы важнее точности вычислений.

Знак
ПорядокМантисса
0000001,0000000000
141090

Число одинарной точности (Binary32, Single precision, float) [ править ]

Число́ одина́рной то́чности — компьютерный формат представления чисел, занимающий в памяти одно машинное слово (в случае 32-битного компьютера — [math]32[/math] бита или [math]4[/math] байта). Используется для работы с вещественными числами везде, где не нужна очень высокая точность.

Знак
Порядок (8 бит)Мантисса (23+1 бита)
0000000001,00000000000000000000000
3023220

Число двойной точности (Binary64, Double precision, double) [ править ]

Число́ двойно́й то́чности — компьютерный формат представления чисел, занимающий в памяти два машинных слова (в случае 32-битного компьютера — [math]64[/math] бита или [math]8[/math] байт). Часто используется благодаря своей неплохой точности, даже несмотря на двойной расход памяти и сетевого трафика относительно чисел одинарной точности.

Знак
Порядок
(11 бит)
Мантисса
(52+1 бит)
0000000000001,0000000000000000000000000000000000000000000000000000
6252510

Число четверной точности (Binary128, Quadruple precision) [ править ]

Число́ четверно́й то́чности — компьютерный формат представления чисел, занимающий в памяти четыре машинных слова (в случае 32-битного компьютера — [math]128[/math] бит или [math]16[/math] байт). Используется в случае необходимости крайне высокой точности.

Знак
Порядок
(15 бит)
Мантисса
(112+1 бит)
00000000000000001,0000000000000000000000000000000000000000000000
126112111
Мантисса
(112+1 бит)
000000000000000000000000000000000000000000000000000000000000000000
0

Обычно этот формат реализуется программно, случаи аппаратной реализации крайне редки. Также не гарантируется поддержка этого типа в языках программирования, хотя кое-где она и реализована (например, компилятор gcc для архитектуры x86 позволяет использовать тип __float128, являющийся программной реализацией числа с четверной точностью). В совокупности эти факторы делают Quadruple весьма экзотичным и редко встречающимся форматом чисел с плавающей запятой.

Диапазон значений чисел с плавающей запятой [ править ]

Данная таблица только лишь примерно указывает границы допустимых значений, без учета возрастающей погрешности с ростом абсолютного значения и существования денормализованных чисел.

Особые значения чисел с плавающей точкой [ править ]

Ноль (со знаком) [ править ]

Как уже было оговорено выше, в нормализованной форме числа с плавающей точкой невозможно представить ноль. Поэтому для его представления зарезервированы специальные значения мантиссы и порядка — число считается нулём, если все его биты, кроме знакового, равны нулю. При этом в зависимости от значения бита знака ноль может быть как положительным, так и отрицательным.

Знак
ПорядокМантисса
0 /1000001,0000000000= [math]\pm0[/math]
141090

Арифметика нуля со знаком
Арифметика отрицательного нуля аналогична таковой для любого отрицательного числа и понятна интуитивно. Вот несколько примеров:

Неопределенность (NaN) [ править ]

NaN — это аббревиатура от фразы «not a number«. NaN является результатом арифметических операций, если во время их выполнения произошла ошибка (примеры см. ниже). В IEEE 754 NaN представлен как число, в котором все двоичные разряды порядка — единицы, а мантисса не нулевая.

Знак
ПорядокМантисса
0 /1111111,0 /10 /10 /10 /10 /10 /10 /10 /10 /10 /1= [math]NaN[/math]
141090

Любая операция с NaN возвращает NaN. При желании в мантиссу можно записывать информацию, которую программа сможет интерпретировать. Стандартом это не оговорено и мантисса чаще всего игнорируется.

Как можно получить NaN?

Есть и другие способы получения NaN, подробности можно найти по ссылкам в соответствующем разделе.

По определению NaN ≠ NaN, поэтому, для проверки значения переменной нужно просто сравнить ее с собой.

Бесконечности [ править ]

Знак
ПорядокМантисса
0 /1111111,0000000000= [math]\pm\infty[/math]
141090

Денормализованные числа [ править ]

То есть число с плавающей запятой, при учете вышесказанного, можно задать следующим образом:

В современных процессорах обработка денормализованных чисел происходит в десятки раз медленнее, чем обработка нормализованных чисел. Ниже приведена часть таблицы из статьи Isaac Dooley, Laxmikant Kale «Quantifying the Interference Caused by Subnormal Floating-Point Values» [1]

ПроизводительПроцессорЗамедление (разы)
IBMPowerPC 9702,4
AMDAthlon6,0
IntelPentium 315,8
AMDAthlon 6421,4
AMDOpteron6423,8
IntelCore Duo44,2
IntelP4 Xeon97,9
IntelPentium 4131,0
IntelItanium 2183,2
SunUltraSPARC IV520,0

В таблице приведены наихудшие результаты тестирования среди всех использованных компиляторов (gcc, icc, xlc) со всеми доступными флагами оптимизации. Исследователи утверждают, что различие среднего случая с худшим незначительно.

Поскольку в стандартных форматах (одинарной и двойной точности) денормализованные числа получаются действительно очень маленькими и практически никак не влияют на результат некоторых вычислений (при этом заметно замедляя их скорость), то иногда они просто игнорируются. При этом используются два простых механизма, получивших называние Flush-to-zero (FTZ) и Denormals-are-zero (DAZ). Первый механизм заставляет операции возвращать ноль, как только становится ясно, что результат будет денормализованным. Второй механизм заставляет операции рассматривать поступающие на вход денормализованные числа как нули.
Ярким примером подобного «отсечения» денормализованных чисел могут послужить видеокарты, в которых резкое падение скорости вычислений в сотню раз недопустимо. Так же, например, в областях, связанных с обработкой звука, нет нужды в очень маленьких числах, поскольку они представляют столь тихий звук, что его не способно воспринять человеческое ухо.

В версии стандарта IEEE 754-2008 денормализованные числа (denormal или denormalized numbers) были переименованы в subnormal numbers, то есть в числа, меньшие «нормальных». Поэтому их иногда еще называют «субнормальными«.

Действия с числами с плавающей запятой [ править ]

Умножение и деление [ править ]

Самыми простыми для восприятия арифметическими операциями над числами с плавающей запятой являются умножение и деление. Для того, чтобы умножить два вещественных числа в нормализованной форме необходимо перемножить их мантиссы, сложить порядки, округлить и нормализовать полученное число.

Соответственно, чтобы произвести деление нужно разделить мантиссу делимого на мантиссу делителя и вычесть из порядка делимого порядок делителя. Затем точно так же округлить мантиссу результата и привести его к нормализованной форме.

Сложение и вычитание [ править ]

Идея метода сложения и вычитания чисел с плавающей точкой заключается в приведении их к одному порядку. Сначала выбирается оптимальный порядок, затем мантиссы обоих чисел представляются в соответствии с новым порядком, затем над ними производится сложение/вычитание, мантисса результата округляется и, если нужно, результат приводится к нормализированной форме. Пример:

Алгоритм получения представления вещественного числа в памяти ЭВМ [ править ]

Покажем преобразование действительного числа для представления его в памяти ЭВМ на примере величины типа Double.

Как видно из таблицы, величина этого типа занимает в памяти [math]8[/math] байт. На рисунке ниже показано, как здесь представлены поля мантиссы и порядка (нумерация битов осуществляется справа налево):

ЗнакСмещённый порядокМантисса
6362..5251..0

Таким образом, из вышесказанного вытекает следующий алгоритм для получения представления действительного числа в памяти ЭВМ:

Очевидно, что более компактно полученный код стоит записать следующим образом: C073850000000000(16).

Другой пример иллюстрирует обратный переход от кода действительного числа к самому числу.

Пример. Пусть дан код 3FEC600000000000(16) или

    0011111111101100011000000000000000000000000000000000000000000000
    6362..5251..0

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *