что такое coil в modbus
Как общаются машины: протокол Modbus
Благодаря универсальности и открытости, стандарт позволяет интегрировать оборудование разных производителей. Modbus используется для сбора показания с датчиков, управления реле и контроллерами, мониторинга, и т.д.
В статье разберем реализации протокола Modbus, форматы данных, программное обеспечение для работы с протоколом. Попробуем на практике прочитать данные из устройства.
История Modbus
Modbus был представлен в 1979 году компанией Modicon (ныне Schneider Electric). Это был открытый стандарт, работающий по интерфейсу RS-232. Позже появилась реализации протокола для интерфейсов RS-485 и Modbus TCP. Протокол быстро набрал популярность, и многие производители стали внедрять его в своих устройствах.
Позже права на протокол были переданы некоммерческой организации Modbus Organization, которая до сегодняшнего дня владеет стандартом.
В описании стандарта Modbus используются терминология, унаследованная от языков релейной логики. Так, например, некоторые регистры называются катушками (англ. coil).
Физический уровень
Логический уровень
Различия протоколов Modbus
Modbus ASCII
Данные кодируются символами из таблицы ASCII и передаются в шестнадцатеричном формате. Начало каждого пакета обозначается символом двоеточия, а конец — символами возврата каретки и переноса строки. Это позволяет использовать протокол на линиях с большими задержками и оборудовании с менее точными таймерами.
Modbus RTU
В протоколе Modbus RTU данные кодируются в двоичный формат, и разделителем пакетов служит временной интервал. Этот протокол критичен к задержкам и не может работать, например, на модемных линиях. При этом, накладные расходы на передачу данных меньше, чем в Modbus ASCII, так как длина сообщений меньше.
Modbus TCP
Структура пакетов схожа с Modbus RTU, данные также кодируются в двоичный формат, и упаковываются в обычный TCP-пакет, для передачи по IP-сетям. Проверка целостности, используемая в Modbus RTU, не применяется, так как TCP уже имеет собственный механизм контроля целостности.
Формат пакета
Форматы пакета разных реализаций Modbus
Все устройства Modbus взаимодействуют, следуя модели master-slave. Запросы может инициировать только master-устройство, slave-устройства могут только отвечать на запросы, и не могут самостоятельно начинать передачу данных. В зависимости от реализации протокола, заголовки пакета различаются. Вот основные составляющие пакета, которые важно знать:
ADU (Application Data Unit) — пакет Modbus целиком, со всеми заголовками, PDU, контрольной суммой, адресом и маркерами. Отличается, в зависимости от реализации протокола.
PDU (protocol data unit) — основная часть пакета, одинаковая для всех реализаций протокола. Содержит сам payload.
Адрес устройства — адрес получателя, то есть slave-устройства. В одном сегменте Modbus-сети могут находится до 247 устройств. Только slave-устройства имеют различающиеся адреса, master-устройство не имеет адреса. Адрес «0» используется для широковещательных запросов от master, при этом, slave-устройства не могут отвечать на эти широковещательные пакеты.
Контрольная сумма — алгоритмы проверки целостности пакетов. В Мodbus RTU и ASCII используется 2 байта контрольной суммы. В Modbus RTU применяется алгоритм CRC16, в Modbus ASCII — более простой и менее надежный LRC8. В Modbus TCP контрольная сумма не добавляется в ADU, так как целостность проверяется на уровне TCP.
Мы не будем разбирать дополнительные заголовки, специфичные для каждой отдельной реализации протокола, так как это не имеет существенного значения при работе с протоколом на прикладном уровне.
Регистры и функции Modbus
В упрощенном виде, структура запросов Modbus состоит из кода функции (чтение/запись), и данных, которые нужно считать или записать. При этом, коды функции различаются для разных типов данных. Разберем, какие бывают регистры, и функции для работы с ними.
Примеры работы
Для примера работы с протоколом Modbus TCP воспользуемся максимально простой консольной утилитой modbus-cli, написанной на языке Ruby. Она позволяет легко читать и писать данные в регистры Modbus.
Попробуем прочесть состояние счетчиков переданных пакетов на промышленном коммутаторе Advantech EKI-5524SSI. Для начала необходимо определить адреса регистров, хранящие нужную информацию, для этого заглянем в документацию устройства. Описание регистров находятся в разделе «Modbus Mapping Table»:
Описание значений регистров в документации коммутаторов EKI
Видно, что значение переданных пакетов для одного порта хранится в четырех регистрах, и для первого порта это регистры с 38193 по 38197. Также дано описание формата хранения данных, из которого следует, что целое число переданных пакетов хранится шестнадцатеричном формате, и значение 11223344 пакетов будет записано как 0xAB4130, справа налево.
read — команда чтения. Программа сама понимает, какую конкретно команду чтения использовать в зависимости от адреса регистра, в нашем случае будет использована команда «04», для чтения 16-битных регистров.
192.168.0.17 — IP-адрес устройства.
38193 — начальный адрес регистра.
4 — смещение относительно начального адреса. Мы читаем четыре регистра для порта 1, как следует из даташита.
Получаем ответ, содержащий значения четырех регистров. Видим, что число пакетов невелико: 0x3459, то есть 13401, — коммутатор был включен недавно.
Недостатки протокола Modbus
Справедливости ради, стоит упомянуть и о недостатках протокола. Так как он разрабатывался более 40 лет назад, когда производительность процессоров была существенно ниже и протоколы разрабатывались без учета защиты данных, он имеет рад минусов:
Оборудование с поддержкой Modbus
Advantech предлагает широкий спектр промышленного оборудования с поддержкой протокола Modbus для любых задач: автоматизации, управления, сбора и передачи данных.
ADAM-6000 и WISE-4000 — модули удаленного ввода-вывода
Модули серии ADAM-6000 и WISE-4000 позволяют удаленно управлять цифровыми и аналоговыми входами/выходами по протоколу Modbus TCP. Используются для управления периферийными устройствами и сбора данных в режиме slave. Могут работать в паре с программируемым логическим контроллером, или подключаться напрямую к SCADA-серверу.⠀⠀⠀ ⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
EKI-1200 — Modbus-шлюзы для преобразования интерфейсов
Для преобразования протоколов Modbus RTU/ASCII в Modbus TCP, используются Modbus шлюзы. Устройства серии EKI-1200 имеют на борту до четырех последовательных интерфейсов RS-232/422/485, и два Ethernet-порта. Они позволяют объединить в одну сеть устройства с разными протоколами. Например, подключить slave устройство, поддерживающее только Modbus RTU, по интерфейсу RS-485 к сегменту сети Modbus TCP.
APAX-5000, ADAM-3600, WISE-5000 — контроллеры автоматизации
Контроллеры поддерживают функции Modbus RTU в качестве slave/master и клиента/сервера Modbus TCP.
Примеры применения
Система мониторинга теплиц
Решение Advantech для мониторинга интегрирует устройства TPC-1070H, ADAM-6024, ADAM-6050, ADAM-6060 и программное обеспечение WebAccess в машинном шкафу рядом с сельскохозяйственными угодьями. Соединяясь с различными чувствительными устройствами, модули ADAM-6000 могут в режиме реального времени получать данные об окружающей среде и контролировать переключение оборудования, чтобы гарантировать, что теплица находится в оптимальной среде для роста растений. Благодаря особой функции Advantech — графической логике условий (GCL), пользователи могут определять свои собственные правила логики управления и загружать эти правила в модули ввода / вывода Ethernet ADAM-6000, а затем модули автоматически выполняют логические правила, как автономные модули. контроллер. Еще одна особенность — Peer-to-Peer (P2P) использует наиболее открытую и гибкую сеть Ethernet, чтобы не только упростить процесс внедрения без контроллера, но и сэкономить затраты на аппаратное оборудование.
Все полученные данные затем передаются через Ethernet на компьютер с сенсорной панелью TPC-1070H. Благодаря системе охлаждения без вентилятора и передней панели, соответствующей стандарту IP65, TPC-1070H представляет собой прочную и компактную конструкцию, подходящую для изменяемой операционной среды, а его мощные вычислительные возможности способны обрабатывать большие объемы данных. Для управления устройствами Advantech WebAccess позволяет инженерам или менеджерам просматривать, контролировать и настраивать систему мониторинга через интрасеть или Интернет с помощью обычного веб-браузера с любого устройства, включая планшеты и смартфоны.
Мониторинг системы нагрева воды солнечной энергией
Инжиниринговая компания должна была иметь возможность контролировать количество солнечной энергии, температуры и расход воды в системе нагрева воды на солнечной энергии для бассейна олимпийских размеров, обеспечиваемого их недавно разработанной солнечной панелью. Они также должны были иметь возможность непосредственно отслеживать эти значения и их аварийные сигналы на ЖК-панелях и сохранять эти значения для дальнейшего использования.
Модули Adam от Advantech предоставили заказчику решение, в котором использовались модули сбора данных, подключенные через RS485, и двухпроводная шина для передачи данных со всех датчиков. Эта системная архитектура имеет два основных преимущества: во-первых, она позволяет в любое время добавлять в систему большее количество датчиков модулей сбора данных, и, во-вторых, очень легко добавлять дополнительные метки в программное обеспечение для мониторинга и записи этих значений на ПК.
Как общаются машины: протокол Modbus
Благодаря универсальности и открытости, стандарт позволяет интегрировать оборудование разных производителей. Modbus используется для сбора показания с датчиков, управления реле и контроллерами, мониторинга, и т.д.
В статье разберем реализации протокола Modbus, форматы данных, программное обеспечение для работы с протоколом. Попробуем на практике прочитать данные из устройства.
История Modbus
Modbus был представлен в 1979 году компанией Modicon (ныне Schneider Electric). Это был открытый стандарт, работающий по интерфейсу RS-232. Позже появилась реализации протокола для интерфейсов RS-485 и Modbus TCP. Протокол быстро набрал популярность, и многие производители стали внедрять его в своих устройствах.
Позже права на протокол были переданы некоммерческой организации Modbus Organization, которая до сегодняшнего дня владеет стандартом.
В описании стандарта Modbus используются терминология, унаследованная от языков релейной логики. Так, например, некоторые регистры называются катушками (англ. coil).
Физический уровень
Логический уровень
Различия протоколов Modbus
Modbus ASCII
Данные кодируются символами из таблицы ASCII и передаются в шестнадцатеричном формате. Начало каждого пакета обозначается символом двоеточия, а конец — символами возврата каретки и переноса строки. Это позволяет использовать протокол на линиях с большими задержками и оборудовании с менее точными таймерами.
Modbus RTU
В протоколе Modbus RTU данные кодируются в двоичный формат, и разделителем пакетов служит временной интервал. Этот протокол критичен к задержкам и не может работать, например, на модемных линиях. При этом, накладные расходы на передачу данных меньше, чем в Modbus ASCII, так как длина сообщений меньше.
Modbus TCP
Структура пакетов схожа с Modbus RTU, данные также кодируются в двоичный формат, и упаковываются в обычный TCP-пакет, для передачи по IP-сетям. Проверка целостности, используемая в Modbus RTU, не применяется, так как TCP уже имеет собственный механизм контроля целостности.
Формат пакета
Форматы пакета разных реализаций Modbus
Все устройства Modbus взаимодействуют, следуя модели master-slave. Запросы может инициировать только master-устройство, slave-устройства могут только отвечать на запросы, и не могут самостоятельно начинать передачу данных. В зависимости от реализации протокола, заголовки пакета различаются. Вот основные составляющие пакета, которые важно знать:
ADU (Application Data Unit) — пакет Modbus целиком, со всеми заголовками, PDU, контрольной суммой, адресом и маркерами. Отличается, в зависимости от реализации протокола.
PDU (protocol data unit) — основная часть пакета, одинаковая для всех реализаций протокола. Содержит сам payload.
Адрес устройства — адрес получателя, то есть slave-устройства. В одном сегменте Modbus-сети могут находится до 247 устройств. Только slave-устройства имеют различающиеся адреса, master-устройство не имеет адреса. Адрес «0» используется для широковещательных запросов от master, при этом, slave-устройства не могут отвечать на эти широковещательные пакеты.
Контрольная сумма — алгоритмы проверки целостности пакетов. В Мodbus RTU и ASCII используется 2 байта контрольной суммы. В Modbus RTU применяется алгоритм CRC16, в Modbus ASCII — более простой и менее надежный LRC8. В Modbus TCP контрольная сумма не добавляется в ADU, так как целостность проверяется на уровне TCP.
Мы не будем разбирать дополнительные заголовки, специфичные для каждой отдельной реализации протокола, так как это не имеет существенного значения при работе с протоколом на прикладном уровне.
Регистры и функции Modbus
В упрощенном виде, структура запросов Modbus состоит из кода функции (чтение/запись), и данных, которые нужно считать или записать. При этом, коды функции различаются для разных типов данных. Разберем, какие бывают регистры, и функции для работы с ними.
Примеры работы
Для примера работы с протоколом Modbus TCP воспользуемся максимально простой консольной утилитой modbus-cli, написанной на языке Ruby. Она позволяет легко читать и писать данные в регистры Modbus.
Попробуем прочесть состояние счетчиков переданных пакетов на промышленном коммутаторе Advantech EKI-5524SSI. Для начала необходимо определить адреса регистров, хранящие нужную информацию, для этого заглянем в документацию устройства. Описание регистров находятся в разделе «Modbus Mapping Table»:
Описание значений регистров в документации коммутаторов EKI
Видно, что значение переданных пакетов для одного порта хранится в четырех регистрах, и для первого порта это регистры с 38193 по 38197. Также дано описание формата хранения данных, из которого следует, что целое число переданных пакетов хранится шестнадцатеричном формате, и значение 11223344 пакетов будет записано как 0xAB4130, справа налево.
read — команда чтения. Программа сама понимает, какую конкретно команду чтения использовать в зависимости от адреса регистра, в нашем случае будет использована команда «04», для чтения 16-битных регистров.
192.168.0.17 — IP-адрес устройства.
38193 — начальный адрес регистра.
4 — смещение относительно начального адреса. Мы читаем четыре регистра для порта 1, как следует из даташита.
Получаем ответ, содержащий значения четырех регистров. Видим, что число пакетов невелико: 0x3459, то есть 13401, — коммутатор был включен недавно.
Недостатки протокола Modbus
Справедливости ради, стоит упомянуть и о недостатках протокола. Так как он разрабатывался более 40 лет назад, когда производительность процессоров была существенно ниже и протоколы разрабатывались без учета защиты данных, он имеет рад минусов:
Оборудование с поддержкой Modbus
Advantech предлагает широкий спектр промышленного оборудования с поддержкой протокола Modbus для любых задач: автоматизации, управления, сбора и передачи данных.
ADAM-6000 и WISE-4000 — модули удаленного ввода-вывода
Модули серии ADAM-6000 и WISE-4000 позволяют удаленно управлять цифровыми и аналоговыми входами/выходами по протоколу Modbus TCP. Используются для управления периферийными устройствами и сбора данных в режиме slave. Могут работать в паре с программируемым логическим контроллером, или подключаться напрямую к SCADA-серверу.⠀⠀⠀ ⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
EKI-1200 — Modbus-шлюзы для преобразования интерфейсов
Для преобразования протоколов Modbus RTU/ASCII в Modbus TCP, используются Modbus шлюзы. Устройства серии EKI-1200 имеют на борту до четырех последовательных интерфейсов RS-232/422/485, и два Ethernet-порта. Они позволяют объединить в одну сеть устройства с разными протоколами. Например, подключить slave устройство, поддерживающее только Modbus RTU, по интерфейсу RS-485 к сегменту сети Modbus TCP.
APAX-5000, ADAM-3600, WISE-5000 — контроллеры автоматизации
Контроллеры поддерживают функции Modbus RTU в качестве slave/master и клиента/сервера Modbus TCP.
Примеры применения
Система мониторинга теплиц
Решение Advantech для мониторинга интегрирует устройства TPC-1070H, ADAM-6024, ADAM-6050, ADAM-6060 и программное обеспечение WebAccess в машинном шкафу рядом с сельскохозяйственными угодьями. Соединяясь с различными чувствительными устройствами, модули ADAM-6000 могут в режиме реального времени получать данные об окружающей среде и контролировать переключение оборудования, чтобы гарантировать, что теплица находится в оптимальной среде для роста растений. Благодаря особой функции Advantech — графической логике условий (GCL), пользователи могут определять свои собственные правила логики управления и загружать эти правила в модули ввода / вывода Ethernet ADAM-6000, а затем модули автоматически выполняют логические правила, как автономные модули. контроллер. Еще одна особенность — Peer-to-Peer (P2P) использует наиболее открытую и гибкую сеть Ethernet, чтобы не только упростить процесс внедрения без контроллера, но и сэкономить затраты на аппаратное оборудование.
Все полученные данные затем передаются через Ethernet на компьютер с сенсорной панелью TPC-1070H. Благодаря системе охлаждения без вентилятора и передней панели, соответствующей стандарту IP65, TPC-1070H представляет собой прочную и компактную конструкцию, подходящую для изменяемой операционной среды, а его мощные вычислительные возможности способны обрабатывать большие объемы данных. Для управления устройствами Advantech WebAccess позволяет инженерам или менеджерам просматривать, контролировать и настраивать систему мониторинга через интрасеть или Интернет с помощью обычного веб-браузера с любого устройства, включая планшеты и смартфоны.
Мониторинг системы нагрева воды солнечной энергией
Инжиниринговая компания должна была иметь возможность контролировать количество солнечной энергии, температуры и расход воды в системе нагрева воды на солнечной энергии для бассейна олимпийских размеров, обеспечиваемого их недавно разработанной солнечной панелью. Они также должны были иметь возможность непосредственно отслеживать эти значения и их аварийные сигналы на ЖК-панелях и сохранять эти значения для дальнейшего использования.
Модули Adam от Advantech предоставили заказчику решение, в котором использовались модули сбора данных, подключенные через RS485, и двухпроводная шина для передачи данных со всех датчиков. Эта системная архитектура имеет два основных преимущества: во-первых, она позволяет в любое время добавлять в систему большее количество датчиков модулей сбора данных, и, во-вторых, очень легко добавлять дополнительные метки в программное обеспечение для мониторинга и записи этих значений на ПК.
Протокол Modbus
Содержание
Основные понятия
В устройствах Wirenboard данные Modbus передаются по последовательным линиям связи RS-485. В последовательных линиях связи протокол RS-485 полудуплексный и работает по принципу «клиент-сервер». Каждое устройство в сети (кроме ведущего см. далее) имеет адрес от 1 до 247, адрес 0 используется для широковещательной передачи данных всем устройствам, а адреса 248–255 считаются зарезервированными согласно спецификации Modbus, их использование не рекомендуется.
Существует две спецификации протокола: Modbus RTU и Modbus ASCII. В Modbus RTU передается 11-битный символ, состоящий из 1 стартового бита, 8 бит данных (начиная с младшего бита), бит четности (необязателен) и 2 стоповых бита, если бит четности не передается, или 1 стоповый бит, если бит четности передается. Такой символ позволяет передать 1 байт данных. В устройствах Wiren Board бит контроля четности не передается и используется 2 стоповых бита. В Modbus ASCII каждый байт передается двумя символами, представляющими ASCII-коды младшей и старшей четырехбитной группы байта (пример). Modbus RTU позволяет передавать больше информации при той же скорости последовательной линии и в устройствах Wiren Board используется именно он. Все дальнейшее описание относится к Modbus RTU.
Ведущее устройство («мастер», или «клиент») периодически опрашивает «ведомое», или «сервер». Ведущее устройство не имеет адреса, передача сообщений от устройства-сервера ведущему без запроса ведущего в протоколе не предусмотрена.
Пакет данных Modbus выглядит, как это показано на рисунке. PDU (Protocol Data Unit) — общая часть пакета MODBUS, включающая код функции и данные пакета. ADU (Application Data Unit) — полный пакет MODBUS. Включает в себя специфичную для физического уровня часть пакета и PDU. Для последовательных линий в заголовке ADU передается адрес устройства, а в конце — контрольная сумма CRC16. Максимальный размер ADU в последовательных коммуникационных линиях составляет 253 байта (из максимальных, разрешенных спецификацией 256 байт вычитается 1 байт адреса и два байта контрольной суммы). Для справки — в Modbus TCP максимальная длина пакета составляет 260 байт.
Функция кодируется одним байтом и определяет, какое действие должно выполнить устройство-сервер. Значение кодов функций лежат в диапазоне от 1 до 255, причем коды от 128 до 255 зарезервированы для сообщений об ошибках со стороны устройства-сервера. Код 0 не используется. Размер блока данных может варьироваться от нуля до максимально допустимого. Если обработка запроса прошла без ошибок, то устройство-сервер возвращает пакет ADU, содержащий запрошенные данные.
При возникновении ошибки устройством возвращается код ошибки. В случае обычной транзакции код функции в ответе возвращается без изменений; в случае ошибки старший бит кода функции устанавливается в единицу (то есть код функции + 0x80)
Стоит определить таймаут ожидания ответа от ведомого устройства — бессмысленно долго ждать ответ, который, возможно, из-за какой-то ошибки никогда и не придет.
Структуры данных Modbus
В Modbus принято кодировать адреса и данные в формате big-endian, то есть в формате, когда байты следуют, начиная со старшего: например, при передаче шестнадцатеричного числа 0x1234 сначала устройством будет принят байт 0x12, а затем — 0x34. Для передачи данных другого типа, например, чисел с плавающей запятой (float), текстовых строк, даты и времени суток и т.п. производитель может выбрать свой собственный способ кодирования — для расшифровки получаемых данных важно ознакомится со спецификацией производителя устройства.
Модель данных Modbus
Обмен данными с Modbus-устройствами происходит через регистры. В протоколе Modbus определяется четыре типа регистров, показанных в таблице:
Таблица | Размер | Доступ |
---|---|---|
Регистры флагов (Coils) | 1 бит | чтение и запись |
Дискретные входы (Discrete Inputs) | 1 бит | только чтение |
Регистры хранения (Holding Registers) | 16-битное слово | чтение и запись |
Регистры ввода (Input Registers) | 16-битное слово | только чтение |
Дискретные входы (Discrete Inputs) также являются однобитными регистрами, описывающими состояние входа устройства (например подано напряжение — 1). Эти регистры поддерживают только чтение.
Регистры хранения (Holding Registers) и регистры ввода (Input Registers) представлены двухбайтовым словом и могут хранить значения от 0 до 65535 (0x0000 — 0xFFFF). Регистры ввода допускают только чтение (например, текущее значение температуры). Регистры хранения поддерживают как чтение, так и запись (для хранения настроек). В настоящее время во многих устройствах, в частности в устройствах Wiren Board, эти регистры не разделяются. Команды на чтение регистра хранения N и регистра ввода N обратятся к одному и тому же значению в адресном пространстве устройства.
Адреса и номера регистров
В стандарте Modbus для каждого из четырех типов регистров используются разные таблицы с номерами 0,1,3,4. Таким образом, регистр определенного типа с определенным номером (иначе его называют физическим адресом) имеет свой адрес в соответствующей таблице.
Таблица | Номер таблицы | Начальный логический адрес | Номер регистра (физический адрес) | Диапазон логических адресов |
---|---|---|---|---|
Регистры флагов (Coils) | 0 | 000001 | 0 | 000001 — 065535 |
Дискретные входы (Discrete Inputs) | 1 | 100001 | 0 | 100001 — 165535 |
Регистры хранения (Holding Registers) | 3 | 300001 | 0 | 300001 — 365535 |
Регистры ввода (Input Registers) | 4 | 400001 | 0 | 400001 — 465535 |
Иногда в описаниях устройства указываются только логические адреса. Например, coil-регистр 0 имеет адрес 000001, регистр ввода 4 — 400005 и т.д.
В готовых шаблонах устройств контроллера Wiren Board 5 есть шаблон для однофазного счетчика электроэнергии SDM220 (/usr/share/wb-mqtt-serial/templates/config-sdm220.json). В документации от производителя «Eastron SDM 220 Modbus Smart Meter Modbus Protocol Implementation V1.0» перечислены регистры и соответствующие им измеряемые параметры, например:
Производитель в таблице приводит и логические, и физические адреса регистров, что позволяет нам с легкостью создать шаблон устройства и проиллюстрировать связь между логическими и физическими адресами Modbus-регистров.
Коды функций чтения и записи регистров
В следующей таблице приведены наиболее распространенные коды функций Modbus:
Код функции | HEX | Название | Действие |
---|---|---|---|
1 | 0x01 | Read Coils | Чтение значений нескольких регистров флагов |
2 | 0x02 | Read Discrete Inputs | Чтение значений нескольких дискретных входов |
3 | 0x03 | Read Holding Registers | Чтение значений нескольких регистров хранения |
4 | 0x04 | Read Input Registers | Чтение значений нескольких регистров ввода |
5 | 0x05 | Write Single Coil | Запись одного регистра флагов |
6 | 0x06 | Write Single Register | Запись одного регистра (ввода или хранения) |
15 | 0x0F | Write Multiple Coils | Запись нескольких регистров флагов |
16 | 0x10 | Write Multiple Register | Запись нескольких регистров (ввода или хранения) |
Команды условно можно разделить по типам: чтение значений — запись значений; операция с одним значением — операция с несколькими значениями.
Формат данных запросов и ответов Modbus
Рассмотрим подробнее, как происходит обмен данными между устройством-клиентом, отправляющим запрос, и устройством-сервером, отвечающим ему. На следующем рисунке показан обмен данными контроллера с устройством с адресом 0x01. Мы хотим прочесть 8 coil-регистров, начиная с первого.
В качестве данных мы получили шестнадцатеричное число 0x2D, то есть состояние восьми coil-регистров в двоичном виде такое: 0b10110100.
В следующей таблице приведены структуры данных запросов и ответов для основных функций Modbus.
Коды исключений (ошибки) Modbus
В случае, если запрос не может по той или иной причине быть обработан устройством-сервером, то в ответ он отправляет сообщение об ошибке. Соообщение об ошибке содержит адрес Modbus-устройства, код функции, при выполнении которой произошла ошибка, увеличенный на 0x80, код ошибки и контрольную сумму:
В этом случае мы попытались обратиться к несуществующему адресу регистра 0xFFFF и попытались прочесть 8 регистров флагов. В результате мы получили код ошибки 0x03 — «В поле данных передано неверное значение».
Наиболее распространенные коды ошибок Modbus приведены в следующей таблице:
Код ошибки | Название ошибки | Что означает |
---|---|---|
1 | Illegal Function | В запросе был передан недопустимый код функции |
2 | Illegal Data Address | Указанный в запросе адрес не существует |
3 | Illegal Data Value | В поле данных передано неверное значение |
4 | Slave Device Failure | Произошла невосстановимая ошибка на устройстве при выполнении запрошенной операции |
5 | Acknowledge | Запрос принят, выполняется, но выполнение потребует много времени; необходимо увеличить таймаут. |
6 | Slave Device Busy | Устройство занято обработкой предыдущего запроса. |
7 | Negative Acknowledge | Устройство не может выполнить запрос, необходимо получить от устройства дополнительную диагностическую информацию. Возможно, требуется тех. обслуживание. |
8 | Memory Parity Error | Ошибка четности при обращении к внутренней памяти устройства. |
Вычисление контрольной суммы Modbus
Для протокола Modbus RTU 16-битная контрольная сумма (CRC) вычисляется по алгоритму, описанному в спецификации Modbus, в документе «Modbus Serial Line Protocol and Implementation Guide», раздел «CRC-generation». Передающее устройство формирует два байта контрольной суммы на основе данных сообщения, а принимающее устройство заново вычисляет контрольную сумму и сравнивает с полученной. Совпадение принятой и вычисленной контрольной суммы Modbud RTU считается индикатором успешного обмена данными.
В случае ограниченных вычислительных ресурсов для вычисления контрольной суммы существует функция, использующая табличные значения (так же приведена в спецификации).