Что такое электроизмерительные приборы
Электроизмерительные приборы
Всего получено оценок: 157.
Всего получено оценок: 157.
Электричество в современном мире играет огромную роль. Поэтому вопрос о параметрах используемого электрического тока нередко возникает не только у специалистов-энергетиков, но и у обычных людей, и даже у школьников, готовящих доклады. Рассмотрим кратко, как устроены электроизмерительные приборы, позволяющие ответить на этот вопрос.
Электроизмерительные приборы: принцип действия.
Электроизмерительные приборы — это специальные устройства, позволяющие получать значения некоторых параметров электрического тока. Любой электроизмеритель включается в исследуемую цепь (постоянно или с помощью щупов) и отображает на индикаторе значение параметра, для которого он предназначен.
Рис. 1. Подключение тестера к электрической цепи.
Принцип действия электроизмерительных приборов основан на том, что исследуемая цепь влияет на подключенный прибор, причем это влияние пропорционально исследуемому параметру. А прибор отображает результат этого влияния в форме, удобной для считывания оператором.
В зависимости от того, какое влияние оказывает цепь на измеритель, различные приборы классифицируются по следующим видам:
В подавляющем большинстве случаев электроизмерительные приборы работают от проходящего через них тока. Приборы остальных принципов менее удобны. В самом деле, для накопления заряда или появления заметного электрического поля в измерительной цепи должны существовать высокие напряжения порядка киловольт. А для существования заметного магнитного поля или выделения заметного количества тепла необходимо наличие высоких токов порядка десятков ампер и выше. При прохождении же тока через измеритель можно обеспечить чувствительность, достаточную для очень малых токов, при этом стоимость прибора будет не сильно высокой.
Если требуется определение напряжения, то используется закон Ома, известный в 11 классе. Подключая прибор к измеряемому напряжению через фиксированное сопротивление, можно получить значение напряжения. Точно так же можно измерить и другие параметры электрического тока: частоту, фазу, нелинейные искажения и другие.
Приборы магнитоэлектрической системы
Электроизмерительные приборы, основанные на прохождении тока, имеют много вариантов, которые называются «системами». Наиболее широко распространены приборы магнитоэлектрической системы. В таких приборах рамка с током помещается в магнитное поле постоянного магнита и удерживается в начальном положении пружинами. Если по рамке идет ток, то в результате возникающей силы Ампера рамка поворачивается до тех пор, пока возникшая сила не будет уравновешена силой пружины. С рамкой связана стрелка, и по углу поворота можно судить о проходящем через прибор токе.
Форма постоянного магнита сделана такой, чтобы магнитное поле, в котором поворачивается рамка, было бы почти однородным. Это позволяет добиться высокой линейности прибора.
Рис. 2. Магнитоэлектрическая система приборов.
Прочие системы электроизмерительных приборов
Электроизмерительные приборы других видов и систем используются значительно реже, когда необходимы особенности этих приборов.
Например, нередко при измерении высоких напряжений слабой мощности недопустимо нагружать исследуемую цепь даже малым током. В этом случае используются системы электростатической системы, которые основаны на накоплении заряда: после заряда эти приборы не потребляют ток и не нагружают измеряемую цепь.
Особенности электроизмерительных приборов различных систем можно свести в таблицу:
Рис. 3. Таблица систем электроизмерительных приборов.
Что мы узнали?
Электроизмерительные приборы предназначены для получения значений одного или нескольких параметров электрического тока. Существует несколько систем электроизмерительных приборов, различающихся по принципу действия. Наиболее часто используются приборы магнитоэлектрической системы как наиболее точные и относительно простые.
Классификация электроизмерительных приборов по принципу действия и другим параметрам
Электроизмерительные приборы востребованы и представлены в большом разнообразии. Они применяются в промышленности, транспортной сфере и других областях деятельности. Устройства имеют особую систему обозначения и имеют классификацию по ряду признаков, которую необходимо знать перед применением приборов.
Конструкция и области применения измерительных приборов
Для измерения различных показателей электрического тока используют специальные приборы. Такие устройства разнообразны и классифицируются по нескольким критериям, что позволяет выбрать оптимальный вариант. Все варианты образуют отдельный класс, называющийся электроизмерительные приборы.
Электроизмерительные приборы многообразны, так как необходимы в разных сферах деятельности
Многие варианты приборов обязательно предполагают наличие дисплея, на котором отображается информация. Также в конструкции присутствуют переключатель или кнопка управления прибором. Разъёмы для подключения кабелей, корпус, кнопка включения/отключения тоже являются элементами электроизмерительных приборов.
Дисплей или циферблат всегда присутствуют на приборах измерения электротока
Устройства разного типа применяют в следующих сферах деятельности:
Простые или сложные модели приборов позволяют измерить силу тока и другие показатели электроэнергии. Для бытовых условий применяют простой вариант — счётчик электроэнергии, а в промышленности используются более сложные и профессиональные устройства. Таким образом, для электроизмерительных приспособлений каждого типа характерно определённое назначение.
Принцип работы
Большинство электроизмерительных устройств имеют принцип действия, основанный на том, что электроны двигаются по проводнику электроцепи и создают вокруг себя магнитное поле. Стрелка измерительного приспособления перемещается в этом поле, реагируя на его параметры. Чем ниже показатели магнитной зоны, тем меньше отклонения стрелки.
Шкала и стрелка присутствуют на многих приборах и визуализируют особенности электрического тока
При этом все приборы электроизмерительного типа по принципу действия разделяются на следующие виды:
Видео: принцип работы измерительных приборов
Варианты классификации приборов измерения тока
Все устройства, служащие для определения параметров электрического тока, классифицируются по нескольким признакам. В зависимости от сферы и цели применения подбирают нужный вариант.
Дисплей может быть цифровым или в виде стрелки и шкалы
Виды конструкций
Классификация устройств по типу конструкции предполагает разделение приборов по внешним данным, форме, корпусу, типу дисплея или шкалы. В результате можно выделить несколько вариантов. Одним из них являются щитовые модели, которые представляют собой объёмный щит с кнопками управления и информационным табло.
Цифровые приборы имеют дисплей, отображающий максимально точный результат измерений
Стационарные не подлежат частому перемещению и устанавливаются для контроля параметров энергии в определённой зоне. В отличие от них более мобильны переносные варианты, которые позволяют провести работы в разных местах без необходимости перемещения массивного оборудования.
Классификация по роду измеряемой величины
Все электроизмерительные устройства классифицируются в зависимости от того, какую величину позволяют определить. Это необходимо для всестороннего изучения показателей напряжения, что важно в разных сферах деятельности. В результате классификации по роду определяемой величины можно выделить следующие виды оборудования:
Осциллограф имеет сложную конструкцию, помогающую получить точный результат
Каждый прибор имеет определённое назначение, но многие из них имеют схожий принцип работы. Оборудование может быть разного размера, а производители представляют широкий выбор вариантов.
Разделение по роду тока
Электрический ток может быть нескольких видов и в зависимости от этого подбирают приборы для его измерения. В результате такого подхода можно выделить изделия, предназначенные для измерения и используемые лишь в цепях постоянного тока. Существуют варианты, которые применяют только в цепях с переменным электричеством. Более универсальны модели, подходящие для работы с обеими цепями.
Способы отображения информации
Существует два варианта: цифровые и аналоговые. Под цифровыми устройствами подразумевают приборы, осуществляющие в процессе измерения автоматическое преобразование определяемой величины в дискретную. При этом величина является непрерывной, а полученный результат отображается на цифровом дисплее или регистрируется цифропечатающим оборудованием.
Цифровой дисплей характеризуется чёткостью отображения
Главное преимущество цифровых моделей по сравнению с иными вариантами заключается в том, что полученный результат измерений может быть преобразован математически или физически без повышения погрешности. Одним из представителей такого вида приборов является цифровой вольтметр. Востребованы также амперметры, фазометры, частотомеры.
Аналоговые варианты часто оснащены шкалой и стрелкой. Оборудование характеризуется тем, что при измерении показатель входного сигнала преобразуется в показатель выходного импульса. Результат показывает стрелка, направленная на градуированную шкалу, имеющую определённый предел.
Шкала со стрелкой имеет определённый диапазон измерений
Три блока являются составляющими аналоговой конструкции: блок сравнения, первичный преобразователь, устройство ввода информации. Элементы соединены в систему и взаимосвязаны друг с другом.
Иные варианты систематизации
Электроизмерительные устройства широко используются и классифицируют не только по вышеперечисленным критериям, но и по другим особенностям. Часто разделение осуществляется по следующим параметрам:
Обозначения приборов
Производители при маркировке изделий указывают определённые обозначения, которые отражают информацию о принципе действия оборудования. Прописная буква в маркировке указывает на тип работы устройства. Основными являются следующие варианты:
Разнообразные приборы имеют множество вариантов классификации
При выборе конкретного устройства учитывают обозначения в маркировке. Перед первым использованием нового оборудования требуется его настройка, выполняющаяся согласно инструкции.
Класс точности электроизмерительных устройств
Помимо иных характеристик, важное значение имеет и класс точности, который отражает особенности прибора. Точность зависит от допустимой предельной погрешности, которая может возникнуть в результате конструктивных особенностей конкретного оборудования. Выделяют по ГОСТу такие классы точности, как: 4,0 и 0,05; 0,1 и 0,2, а также 0,5 и 1,0, 1,5 и 2,5. Класс не превышает относительной погрешности устройства, определяющейся по формуле: — ɣ = ∆x / xпр * 100%. При этом ɣ — приведённая погрешность, ∆x — абсолютная погрешность, а xпр является измеряемым параметром.
Видео: классификация электроизмерительного оборудования
Оборудование для измерения разных показателей электротока представлено множеством моделей и типов. Выбор правильного устройства является залогом точных измерений и эффективной работы приборов.
Электроизмерительный прибор
Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений — меры, преобразователи, комплексные установки.
Амперметр переменного тока
Вольтметр переменного тока
Содержание
Применение
Средства электрических измерений широко применяются в энергетике, связи, промышленности, на транспорте, в научных исследованиях, медицине, а также в быту — для учёта потребляемой электроэнергии. Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения.
Классификация
Обозначения
В зарубежных странах обозначения средств измерений устанавливаются предприятиями-изготовителями, в России (и частично в других странах СНГ) традиционно принята унифицированная система обозначений, основанная на принципах действия электроизмерительных приборов. В состав обозначения входит прописная русская буква, соответствующая принципу действия прибора, и число — условный номер модели. Например: С197 — киловольтметр электростатический. К обозначению могут добавляться буквы М (модернизированный), К (контактный) и другие, отмечающие конструктивные особенности или модификации приборов.
История
Литература и документация
Литература
Нормативно-техническая документация
Ссылки
См. также
Полезное
Смотреть что такое «Электроизмерительный прибор» в других словарях:
электроизмерительный прибор — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN electrical measuring instrument … Справочник технического переводчика
электроизмерительный прибор — elektrinių dydžių matuoklis statusas T sritis Standartizacija ir metrologija apibrėžtis Elektrinis įtaisas elektriniams dydžiams matuoti. atitikmenys: angl. electrical measuring instrument vok. elektrisches Messgerät, n; Messgerät für elektrische … Penkiakalbis aiškinamasis metrologijos terminų žodynas
электроизмерительный прибор — elektrinių dydžių matuoklis statusas T sritis fizika atitikmenys: angl. electrical measuring instrument vok. elektrisches Meßgerät, n; Meßgerät für elektrische Größen, n rus. электроизмерительный прибор, m pranc. appareil de mesure électrique, m… … Fizikos terminų žodynas
ВЫПРЯМИТЕЛЬНЫЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ ПРИБОР — служит для измерений напряжения, силы тока, отношения токов, частоты, фазы, мощности в электрич. цепях перем. тока. Наиболее распространены на основе В. э. п. амперметры и вольтметры. Схема включения В. э. п. определяется видом измеряемой… … Физическая энциклопедия
цифровой электроизмерительный прибор — Электроизмерительный прибор, в котором измеряемая непрерывная электрическая величина автоматически преобразуется в дискретную, подвергается цифровому кодированию, а результат измерения представляется в цифровой форме, удобной для визуального… … Справочник технического переводчика
ЦИФРОВОЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ ПРИБОР — средство измерений, в к ром значение измеряемой электрич. величины представляется в виде числа на отсчётном устройстве. Применяется для измерений практически всех электрич. величин (напряжения, тока, сопротивления, ёмкости, индуктивности и др.),… … Физическая энциклопедия
КОМБИНИРОВАННЫЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ ПРИБОР — средство для измерения неск. разнородных электрич. величин (тока, напряжения, сопротивления, ёмкости и др.). К. э. п. состоит из неск. цепей, преобразующих разнородные электрич. величины в одну определ. электрич. величину, воспринимаемую измерит … Физическая энциклопедия
тепловой электроизмерительный прибор — elektrinis šiluminis matuoklis statusas T sritis Standartizacija ir metrologija apibrėžtis Matuoklis, kurio veikimas pagrįstas laidininko kaitimo reiškiniu, kai juo teka elektros srovė. atitikmenys: angl. electrothermal instrument; electrothermic … Penkiakalbis aiškinamasis metrologijos terminų žodynas
тепловой электроизмерительный прибор — elektrinis šiluminis matuoklis statusas T sritis fizika atitikmenys: angl. electrothermal instrument; electrothermic instrument vok. elektrothermisches Meßgerät, n rus. тепловой электроизмерительный прибор, m pranc. appareil de mesure thermique,… … Fizikos terminų žodynas
тепловой электроизмерительный прибор — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN thermal electric meter … Справочник технического переводчика
Что такое электроизмерительный прибор: точность и принцип действия
Класс устройств, которые применяются для измерения электрических величин, называются электроизмерительными приборами. Наиболее известные из них – амперметры, вольтметры и омметры.
Сфера применения
Электроизмерительный прибор является необходимым устройством в связи, энергетике, промышленности, на транспорте, в медицине и научных исследованиях. Применяется это устройство и в быту, например для учета потребленной электроэнергии.
А если применить специальные преобразователи величин неэлектрических в электрические, то диапазон применения электроизмерительных приборов становится значительно шире.
Классификация электроизмерительных приборов
— на измеряющие силу электрического тока – амперметры,
— измеряющие электрическое напряжение – вольтметры,
— измеряющие электрическое сопротивление – омметры,
— измеряющие частоту колебаний электротока – частотомеры,
— измеряющие различные величины – мультиметры или авометры, тестеры,
— для воспроизведения указанных сопротивлений – магазины сопротивлений,
— измеряющие мощность электрического тока – варметры и ваттметры,
— измеряющие потребление электрической энергии – электросчетчики и пр.
Другие признаки систематизации
Существуют и другие признаки, по которым классифицируют такой вид устройств, как электроизмерительный прибор. Это может быть:
1. Назначение: меры, измерительные приборы и преобразователи, измерительные системы и установки, прочие вспомогательные устройства.
2. Система предоставления полученного результата: регистрирующие (графическое изображение на фотопленке или бумаге либо в виде компьютерного файла) или показывающие.
3. Способ измерения: приборы сравнения или непосредственной оценки.
4. Способ использования и конструктивные особенности: переносные, щитовые (закрепляются на специальной панели или щите), стационарные.
По принципу действия классификация электроизмерительных приборов выглядит следующим образом:
Система обозначений
За рубежом заводы-изготовители устанавливают свои обозначения на выпускаемых измерительных устройствах. В России и некоторых бывших республиках Советского Союза традиционна унифицированная система знаков. Основана она на принципе работы конкретного прибора. Основные электроизмерительные приборы в обозначении всегда имеют прописную букву русского алфавита, которая указывает на принцип действия устройства. А также число, которое обозначает условный номер модели. Иногда можно встретить прописную букву М, которая обозначает, что прибор модернизированный или К (контактный). Есть и другие, обозначения. Например, Д (электродинамические приборы), Н (самопишущие приборы), Р (меры, устройства, измеряющие параметры элементов электросетей, измерительные преобразователи), И (индукционные приборы), Л (логометры) и пр.
Показатели точности
Одна из главных характеристик прибора для электроизмерений – класс точности. Их существует несколько. А определяется он по зависимости от допустимого предела погрешности, вызванной конструктивными особенностями отдельно взятого устройства.
Точность электроизмерительных приборов не может быть равна погрешности относительной или абсолютной. Последняя не является определителем точности, а относительная имеет зависимость от значения величины, подвергшейся изменению, то есть для различных участков шкалы будет иметь разные значения.
Поэтому для характеристики точности электроприбора применяется приведенная погрешность (ɣ). Определяется она отношением погрешности абсолютной конкретного прибора (∆x) к максимуму (или пределу) измеряемой величины (xпр). Полученная величина, выраженная в процентах, и будет классом точности конкретного прибора:
Любой электроизмерительный прибор на шкале обязательно имеет указание на класс точности. Согласно ГОСТу он может быть 0,05, 0,1, 0,2, 0,5, 1,0, 1,5, 2,5 и 4,0. На этом основании приборы можно классифицировать следующим образом:
— класс точности 0,2 и 0,5 – лабораторные, используются в лабораториях для производства измерений и поверки технических приборов;
— класс точности 1,0, 1,5, 2,5 и 4,0 – технические, применяются для технических измерений.
Электроизмерительные приборы: принцип действия
Работа большей части электроизмерительных приборов основана на магнитоэлектрическом эффекте. Электроны, двигаясь по проводнику электрической цепи, образуют вокруг себя магнитное поле. В нем и перемещается стрелка измеряющего устройства, реагируя на силу окружающего поля. Чем магнитное поле слабее, тем меньше отклонение стрелки и наоборот.
Если в непосредственной близости от проводника, через который не протекает электрический ток, подвешена стрелка, то реагировать она может только на магнитное поле Земли. Но если через проводник пропустить ток, стрелка будет уже реагировать на магнитное поле электрического тока. Таким образом, механическое отклонение стрелки провоцируют электроны, двигаясь через проводник. И следовательно, чем больше электрический ток, тем сильнее образованное им поле и тем дальше от начального положения отклоняется стрелка. Этот незатейливый принцип является основополагающим для большинства электроизмерительных приборов.
Один электроизмерительный прибор отличается от другого не измерительным отклонением стрелки (приборов с цифровым индикатором это не касается), а внутренними цепями и способами создания электромагнитного поля. Как известно, для движения в электрической сети электронов необходима нагрузка. Поэтому это движение имеет некоторые различия в омметрах, вольтметрах и амперметрах, имеющих измерительные клещи. Приборы с такими захватами «вытягивают» магнитное поле из пластинок, их образующих. В вольтметре для получения магнитного поля применяется резистор, который получает нагрузку при подаче на цепь напряжения. Омметр имеет индивидуальный источник питания и использует устройство, которое подвергает измерению, для образования магнитного поля.
Описанные выше приборы проводят измерения одинаковым способом, притом что подача нагрузки и источники питания у них разные.
Измерительное смещение стрелки, провоцируемое магнитным полем движущихся электронов, указывает на какое-либо деление шкалы. Их обычно несколько, и у каждой свой предел измерения напряжения, сопротивления и тока. На некоторых приборах для удобства пользователя продуман селекторный переключатель.
Как работают цифровые измерители
Цифровые электроизмерительные приборы имеют высокий класс точности (погрешность варьируется от 0,1 до 1,0 %) и широкий предел измерений. Они быстродейственны и могут совместно работать с электронно-вычислительными машинами, что позволяет передавать результаты измерений без каких-либо искажений на различные расстояния.
Эти устройства считаются приборами сравнения и непосредственной оценки. Их работа основана на принципе перевода измеряемой величины в код, благодаря чему пользователь имеет цифровое представление информации. Ещё какие электроизмерительные приборы относятся к цифровым? Это устройства, которые, измеряя непрерывную электрическую величину, автоматически конвертируют её в дискретную, кодируют и выдают результат в цифровой форме, удобной для считывания пользователем.
Устройства, расположенные в одном корпусе
Это приборы, которые для неодновременного измерения нескольких величин используют один механизм для измерения. Или же они имеют несколько преобразователей с общим для всех отсчетным устройством (шкалой). Она градуируется в единицах измеряемых величин. Чаще всего комбинированные электроизмерительные приборы совмещают в себе устройства, измеряющие силу постоянного или переменного тока и электрического напряжения (ампервольтметры); сопротивления, силы постоянного и переменного тока, напряжение (авометры или ампервольтомметры). А также существуют универсальные цифровые электроизмерительные приборы, которые измеряют напряжение постоянного и переменного тока, индуктивность и количество импульсов.
Примером такого устройства может служить новая разработка «Актаком ADS-4031». Прибор от компании «Актаком» гармонично сочетает в себе функциональный генератор, цифровой осциллограф, частотомер, RLC-метр и цифровой мультиметр. Кроме основных пяти совмещенных устройств, осциллографический тестер благодаря дополнительным приспособлениям может использоваться для ряда других измерительных задач.
Производство и разработка электроизмерительных приборов
На территории России работают и активно продвигают на рынок свою продукцию как новые предприятия, так и заводы, ведущие свою историю со времен СССР. Рассмотрим их более подробно.
ОАО «Электроприбор»
Пользуются большим спросом приборы с электронными преобразователями, измеряющими частоту реактивной или активной мощности, а также ее коэффициент. Не менее популярны индикаторы, приборы для оснащения специализированных учебных кабинетов, различные цифровые приборы и комплектующие. В конце прошлого века предприятие получило сертификат, подтверждающий систему менеджмента качества ИСО 9001, соответствующую международному стандарту.
Чебоксарский завод более 55 лет занимает лидерские позиции среди производителей электроизмерительных приборов.
ОАО «НИИ Электромера»
В конце прошлого столетия ВНИИЭП преобразован в ОАО «НИИ Электромера».
ООО «Белтехприбор»
Одно из современных предприятий – ООО «Белтехприбор». Здесь постоянно расширяют номенклатуру выпускаемой продукции. Сегодня контрольно-измерительные приборы и низковольтное оборудование поставляется на отечественные предприятия машиностроительного, электромеханического, топливно-энергетического и нефтеперерабатывающего профиля.