действия с комплексными числами в алгебраической форме примеры с решением
Комплексные числа
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Вычислить сумму и разность заданных комплексных чисел:
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Аналогично выполним вычитание чисел:
Выполнить умножение и деление комплексных чисел:
Так, теперь разделим первое число на второе:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
Для возведения в квадрат достаточно умножить число само на себя:
Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Вычисляем значение модуля:
Найдем чем равен аргумент:
$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$
Записываем в тригонометрическом виде:
Преобразуем в алгебраическую форму для наглядности:
Представим число в тригонометрической форме. Найдем модуль и аргумент:
Используем знакомую формулу Муавра для вычисления корней любой степени:
Алгебраические операции с комплексными числами
Содержание:
Действия над комплексными числами, заданными в алгебраической форме
Алгебраическая форма комплексного числа
Как отмечалось ранее, комплексное число можно задавать в виде или
. Последующее изучение комплексных чисел показывает, что комплексные числа можно задавать и другими способами.
Комплексное число, заданное в виде , называется комплексным числом в алгебраической форме.
Рассмотрим действия над комплексными числами, заданными в алгебраической форме.
Сложение комплексных чисел
Следовательно, чтобы сложить два комплексных числа, нужно сложить их действительные части, что дает действительную часть суммы, и сложить мнимые части, что дает мнимую часть суммы.
Сумма комплексно-сопряжённых чисел всегда является действительным числом.
Следовательно,
Свойства суммы комплексных чисел
1. Сложение комплексных чисел является коммутативным, то есть для любых комплексных чисел справедливо равенство
2. Сложение комплексных чисел является ассоциативным, то есть для любых комплексных чисел справедливо равенство
Возможно вам будут полезны данные страницы:
Вычитание комплексных чисел
Определение. Разностью двух комплексных чисел называется такое число, которое в сумме с вычитаемым дает уменьшаемое.
Вычитание комплексных чисел является всегда возможным.
Теорема Для любых комплексных чисел всегда существует разность
, определяемая однозначно.
Докажем, что существует такое число , которое удовлетворяет условию
, то есть что
или
. На основании равенства комплексных чисел приходим к системе уравнений
Эта система уравнений имеет решение, и к тому же лишь одно, а именно:
что и нужно было доказать.
Разность комплексно-сопряжённых чисел всегда является мнимым числом.
Умножение комплексных чисел
Определение. Произведением двух комплексных чисел и
называется комплексное число, определяемое формулой
Произведение комплексно-сопряжённых чисел всегда является действительным числом.
Свойства произведения комплексных чисел
1. Умножение комплексных чисел является коммутативным, то есть для любых комплексных чисел справедливо равенство
2. Умножение комплексных чисел является ассоциативным, то есть для любых комплексных чисел справедливо равенство
3. Умножение комплексных чисел является дистрибутивным относительно сложения, то есть для любых комплексных чисел справедливо равенство
Деление комплексных чисел
Определение. Частным от деления комплексных чисел называется такое комплексное число, которое в произведении с делителем дает делимое, если делитель отличается от нуля.
Докажем, что всегда существует частное от деления двух комплексных чисел, если знаменатель отличается от нуля.
Теорема Частное определяется однозначно для любых комплексных чисел
если
Пусть . Докажем, что существуют такие числа х и у, которые удовлетворяют уравнению
Выполнив умножение, получим:
Исходя из равенства комплексных чисел, имеем систему уравнений
Решив эту систему уравнений, находим
Следовательно, система уравнений имеет решение, и к тому же единственное. Тогда
ЗАМЕЧАНИЕ. Деление комплексных чисел в алгебраической форме удобно выполнять следующим образом. Числитель и знаменатель следует умножить на число, комплексно-сопряженное знаменателю, после чего в числителе и знаменателе выполнить умножение комплексных чисел по правилу умножения многочленов. Полученный результат записать в алгебраической форме.
Примеры с решением
Пример задачи с решением 2.1
Решение:
Использовав формулы (2.1), (2.2), (2.5), (2.6), получим:
Ответ:
Пример задачи с решением 2.2
Найти значение выражения
Решение:
Воспользовавшись правилом умножения многочленов, имеем
Ответ:
Пример задачи с решением 2.3
Решение:
Воспользуемся правилом умножения многочленов:
4) По формуле (2.8) имеем:
Ответ:
Пример задачи с решением 2.4
Решение:
Деление комплексных чисел можно выполнять по формуле (2.13), но проще это сделать, умножив числитель и знаменатель на число, комплексносопряжённое знаменателю.
Ответ:
На странице -> решение задач по электротехнике собраны решения задач и заданий с решёнными примерами по всем темам теоретических основ электротехники (ТОЭ).
Услуги:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Действия с комплексными числами в алгебраической форме примеры с решением
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z = x + iy и называются комплексно сопряженными.
Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотношений сторон в прямоугольном треугольнике получаем
Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле
Аргумент определяется из формул:
Используя формулу Эйлера
комплексное число можно записать в так называемой показательной (или экспоненциальной) форме
где r =| z | — модуль комплексного числа, а угол ( k =0;–1;1;–2;2…).
Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.
На множестве комплексны х чисел определен ряд операций.
Из (7.11) следует важнейшее соотношение i 2 = –1. Действительно,
Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = –1 и формулы разности квадратов.
Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z 2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
в натуральную степень, определенному ранее формулой (7.13).
(7.18) называется второй формулой Муавра.
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.
Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №38. Определение комплексного числа. Действия с комплексными числами.
Перечень вопросов, рассматриваемых в теме
1) понятие мнимой единицы;
2) определение комплексного числа;
3) действия с комплексными числами и действия над ними.
Запись комплексного числа в виде a + bi называют алгебраической формой комплексного числа, где а – действительная часть, bi – мнимая часть, причем b – действительное число.
Два комплексных числа z = a + bi и = a – bi, отличающиеся лишь знаком мнимой части, называются сопряженными.
Определение. Вычесть из комплексного числа z1 комплексное число z2, значит найти такое комплексное число z,
Теорема. Разность комплексных чисел существует и притом единственная.
Определение. Произведением комплексных чисел z1=a1+ b1 i и z2=a2+b2 i называется комплексное число z, определяемое равенством:
Определение. Разделить комплексное число z1 на комплексное число z2, значит найти такое комплексное число z, что z · z2 = z1.
Теорема. Частное комплексных чисел существует и единственно, если z2 ≠ 0 + 0i.
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Исходя из этого, получим следующее определение комплексного числа.
б) Сложение комплексных чисел определяется правилом:
в) Умножение комплексных чисел определяется правилом:
Запись комплексного числа в виде a + bi называют алгебраической формой комплексного числа, где а – действительная часть, bi – мнимая часть, причем b – действительное число.
Комплексное число a + bi считается равным нулю, если его действительная и мнимая части равны нулю: a = b = 0
Комплексное число a + bi при b = 0 считается совпадающим с действительным числом a: a + 0i = a.
Комплексное число a + bi при a = 0 называется чисто мнимым и обозначается bi: 0 + bi = bi.
Два комплексных числа z = a + bi и = a – bi, отличающиеся лишь знаком мнимой части, называются сопряженными.
Над комплексными числами в алгебраической форме можно выполнять следующие действия.
Сложение комплексных чисел обладает следующими свойствами:
3º. Комплексное число – a – bi называется противоположным комплексному числу z = a + bi. Комплексное число, противоположное комплексному числу z, обозначается -z. Сумма комплексных чисел z и -z равна нулю: z + (-z) = 0
Пример 1. Выполните сложение (3 – i) + (-1 + 2i).
(3 – i) + (-1 + 2i) = (3 + (-1)) + (-1 + 2) i = 2 + 1i.
Определение. Вычесть из комплексного числа z1 комплексное число z2, значит найти такое комплексное число z, что z + z2 =z1.
Теорема. Разность комплексных чисел существует и притом единственная.
Определение. Произведением комплексных чисел z1=a1+ b1 i и z2=a2+b2i называется комплексное число z, определяемое равенством:
Умножение комплексных чисел обладает следующими свойствами:
3º. Дистрибутивность умножения относительно сложения:
На практике умножение комплексных чисел производят по правилу умножения суммы на сумму и выделения действительной и мнимой части.
В следующем примере рассмотрим умножение комплексных чисел двумя способами: по правилу и умножением суммы на сумму.
Пример 3. Выполните умножение (2 + 3i) (5 – 7i).
1 способ. (2 + 3i) (5 – 7i) = (2⋅ 5 – 3⋅ (- 7)) + (2⋅ (- 7) + 3⋅ 5)i =
= (10 + 21) + (- 14 + 15)i = 31 + i.
2 способ. (2 + 3i) (5 – 7i) = 2⋅ 5 + 2⋅ (- 7i) + 3i⋅ 5 + 3i⋅ (- 7i) =
= 10 – 14i + 15i + 21 = 31 + i.
Определение. Разделить комплексное число z1 на комплексное число z2, значит найти такое комплексное число z, что z · z2 = z1.
Теорема. Частное комплексных чисел существует и единственно, если z2 ≠ 0 + 0i.
На практике частное комплексных чисел находят путем умножения числителя и знаменателя на число, сопряженное знаменателю.
Пусть z1 = a1 + b1i, z2 = a2 + b2i, тогда
В следующем примере выполним деление по формуле и правилу умножения на число, сопряженное знаменателю.
Пример 4. Найти частное
5) Возведение в целую положительную степень.
а) Степени мнимой единицы.
i 8 = i 6 i 2 = 1 и т. д.
Поэтому, чтобы возвести число i в целую положительную степень, надо показатель степени разделить на 4 и возвести i в степень, показатель которой равен остатку от деления.
i 36 = (i 4 ) 9 = 1 9 = 1,
i 17 = i 4⋅ 4+1 = (i 4 ) 4 ⋅ i = 1 · i = i.
б) Возведение комплексного числа в целую положительную степень производится по правилу возведения двучлена в соответствующую степень, так как оно представляет собой частный случай умножения одинаковых комплексных сомножителей.
Пример 6. Вычислите: (4 + 2i) 3
(4 + 2i) 3 = 4 3 + 3⋅ 4 2 ⋅ 2i + 3⋅ 4⋅ (2i) 2 + (2i) 3 = 64 + 96i – 48 – 8i = 16 + 88i.
Стоит отметить. что с помощью комплексных чисел можно решать квадратные уравнения, у которых отрицательный дискриминант.
Рассмотрим решение квадратных уравнений, дискриминант которых отрицателен.
Пример 7. Решите уравнения:
а) x 2 – 6x + 13 = 0; б) 9x 2 + 12x + 29 = 0.
Решение. а) Найдем дискриминант по формуле
D = b 2 – 4ac.
Так как a = 1, b = – 6, c = 13, то
D = (– 6) 2 – 4×1×13 = 36 – 52 = – 16;
Корни уравнения находим по формулам
б) Здесь a = 9, b = 12, c = 29. Следовательно,
D = b 2 – 4ac =122 – 4×9×29 = 144 – 1044 = – 900,
Находим корни уравнения:
Мы видим, что если дискриминант квадратного уравнения отрицателен, то квадратное уравнение имеет два сопряженных комплексных корня.
Разбор решения заданий тренировочного модуля
№1. Тип задания: единичный выбор
Вычислите сумму (2 + 3i)+ (5 – 7i).
Можем сделать вывод, что верный ответ
№2. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.