какой год считается годом рождения электропривода
Ответы к тесту: Изобретение электпривода
⚑ Закажите написание студенческой работы!
Если возникли сложности с подготовкой студенческой работы, то можно доверить её выполнение специалистами нашей компании. Мы гарантируем исполнить заказ во время и без ошибок!
Тестовый вопрос: Приемник солнечного излучения, тепловоспринимающая поверхность которого имеет форму полости различной конфигурации.
Выберите правильный ответ:
[ верно ] Полостной приемник солнечного излучения.
[неверно] Вакуумированный приемник.
[неверно] Центральный приемник.
[неверно] Солнечный парогенератор.
[неверно] Солнечный экономайзер.
Тестовый вопрос: Элемент термодинамических солнечных электростанций, в котором происходит генерация пара.
Выберите правильный ответ:
[ верно ] Солнечный парогенератор.
[неверно] Вакуумированный приемник.
[неверно] Центральный приемник.
[неверно] Полостной приемник солнечного излучения.
[неверно] Солнечный экономайзер.
Тестовый вопрос: Элемент термодинамических солнечных электростанций, в котором происходит предварительный нагрев теплоносителя перед его поступлением в солнечный парогенератор.
Выберите правильный ответ:
[ верно ] Солнечный экономайзер.
[неверно] Вакуумированный приемник.
[неверно] Центральный приемник.
[неверно] Полостной приемник солнечного излучения.
[неверно] Солнечный парогенератор.
Тестовый вопрос: Впервые кому в каком году удалось создать электродвигатель постоянного тока?
Выберите правильный ответ:
[ верно ] Б.С. Якоби и Э.Х. Ленцу в 1834 году;
[неверно] Б.С. Якоби в 1820 году:
[неверно] А. Ампер в 1830 году:
[неверно] М. Фарадей в 1833 году:
[неверно] все ответы правильны;
Тестовый вопрос: Какой год считается годом рождения электро – привода?
Выберите правильный ответ:
[ верно ] 1938:
[неверно] все ответы правильны;
Тестовый вопрос: Кто разработал систему «инжектор-двигатель»-я для рулевого управления?
Выберите правильный ответ:
[неверно] Д.А. Лачинова:
[ верно ] А.В. Шубин:
[неверно] все ответы правильны;
Тестовый вопрос: В каком году кто построил однофазный синхронный электродвигатель?
Выберите правильный ответ:
[ верно ] В 1841 году англичанин Ч. Уитсон:
[неверно] В 1876 году П.Н. Яблочков:
[неверно] В 1888 году итальянцем Г. Феррари Сом:
[неверно] В 1845 году англичанин Ч. Уитсон:
[неверно] все ответы правильны;
Тестовый вопрос: Когда была построена первая линия электропередачи протяженностью 57 км и мощностью 3 кВт?
Выберите правильный ответ:
[ верно ] в 1882;
[неверно] все ответы правильны;
Тестовый вопрос: Первые 3-х фазные ЭП переменного тока когда были установлены?
Выберите правильный ответ:
[ верно ] в 1893;
[неверно] все ответы правильны;
Тестовый вопрос: В качестве передаточного устройства что могут выступать?
Выберите правильный ответ:
[ верно ] редукторы, клиноременные и цепные передачи, электромагнитные муфты скольжения;
[неверно] механическая энергия;
[неверно] рабочий орган;
[неверно] рабочая машина;
[неверно] все ответы правильны;
Тестовый вопрос: Что такое рабочая машина?
Выберите правильный ответ:
[неверно] совокупность управляющих и информационных устройств и устройств сопряжения ЭП;
[ верно ] машина, осуществляющая изменение формы, свойств, состояния и положения предмета труда;
[неверно] внешняя по отношению к электроприводу система управления более высокого уровня;
[неверно] преобразователь электроэнергии;
[неверно] все ответы правильны;
Тестовый вопрос: Как называется исполнительный орган рабочей машины?
Выберите правильный ответ:
[неверно] совокупность управляющих и информационных устройств и устройств;
[неверно] внешняя по отношению к электроприводу система управления более высокого уровня;
[неверно] осуществляющая изменение формы, свойств, состояния и положения предмета труда;
[ верно ] движущийся элемент рабочей машины, выполняющий технологическую операцию;
[неверно] все ответы правильны;
Тестовый вопрос: Что такое групповой электропривод?
Выберите правильный ответ:
[неверно] движущийся элемент рабочей машины, выполняющий технологическую операцию;
[ верно ] электропривод с одним электродвигателем, обеспечивающий движение исполнительных органов нескольких рабочих машин или нескольких ИО одной рабочей машины;
[неверно] внешняя по отношению к электроприводу система управления более высокого уровня, поставляющая необходимую для функционирования электропривода информацию;
[неверно] все ответы правленые;
[неверно] все ответы не правильны;
Тестовый вопрос: Что такое индивидуальны электропривод –?
Выберите правильный ответ:
[ верно ] это «ЭП, обеспечивающий движение одного исполнительного органа рабочей машины»;
История развития электропривода
Начало развития электропривода было положено созданием в первой половине XIX в. работоспособных образцов электрического двигателя. Первое практическое использование электродвигателя постоянного тока, оснащенного другими характерными элементами электропривода: механической передачей, органами управления и т. п. – и обеспечивавшего движение катера вверх по р. Неве, относят к 1834 – 1838 гг. и связывают с именем акад. Б.С. Якоби. Эта работа получила мировую известность, однако несовершенство технических средств и, главным образом, источника питания – гальванической батареи – не позволило блестящему изобретению Б.С. Якоби и работам его последователей найти широкое практическое применение. Лишь в 70-е годы XIX в. были разработаны практически применимые двигатели постоянного тока, демонстрировавшиеся на выставках в Вене, Париже, Мюнхене.
Условия для развития массового электропривода создались в конце XIX в. благодаря открытию в 1886 г. Г. Феррарисом и Н. Тесла явления вращающегося магнитного поля, положившего начало созданию многофазных электродвигателей переменного тока, и, главным образом, благодаря комплексу выдающихся работ М.О. Доливо-Добровольского, который в 1888 г. предложил и реализовал трехфазную систему передачи электрической энергии переменного тока, и разработал в 1889 г. трехфазный асинхронный двигатель с распределенной обмоткой статора и с короткозамкнутым ротором в виде беличьего колеса.
Конец XIX – начало XX вв. характеризуются строительством электрических станций и развитием электрических сетей. Централизованная выработка электроэнергии с ее последующим распределением послужила основой для создания промышленного, индивидуального и группового электропривода.
Одновременно электрический привод вытеснял все виды механического привода. Так, мощность электродвигателей по отношению к общей мощности установленных двигателей в 1890 г. составляла 5 %, в 1927 г. – 75 %, к 1950 г. – около 100 %.
В период интенсивного перехода к индивидуальному электроприводу, во всех новых производствах появилось большое количество различных типов электроприводов. Если в нерегулируемом электроприводе малой и средней мощности прочно заняли свое место и не уступили его до настоящего времени асинхронные двигатели с короткозамкнутым ротором, а в мощных электроприводах – синхронные двигатели, то регулируемые электроприводы были весьма разнообразны: широко использовались двигатели постоянного тока с различными схемами возбуждения (независимой, параллельной, последовательной, смешанной) при реостатном регулировании или при ослаблении магнитного поля, асинхронные двигатели с фазным ротором, коллекторные двигатели переменного тока, двигатели Бушеро и т. п.
Наибольшее применение в регулируемых электроприводах средней и большой мощности в этот период и в дальнейшем нашла предложенная еще в конце XIX в. система Вард-Леонарда (генератор-двигатель), состоящая из нескольких электрических машин, но обладающая отличными регулировочными возможностями как в статике, так и в динамике.
Идеи автоматического управления, зародившиеся задолго до создания работоспособного электропривода (идеи Уатта–Ползунова и др.), в 30-е годы начали интенсивно развиваться применительно к электроприводу. К началу 40-х годов электромеханическая часть индивидуального, в т. ч. многодвигательного электропривода, приобрела современные черты. Его характерной особенностью оставалось релейно-контакторное управление, хотя уже стали появляться системы непрерывного управления, основанные на применении замкнутых структур с использованием усилителей разных типов: машинных, электронно-ионных, несколько позже магнитных.
В 1941 г. начала интенсивно развиваться военная электротехника, в частности специальные следящие электроприводы для управления орудийным огнем, радиолокации и т. п. Большую роль в создании новых, оригинальных специальных электроприводов сыграл завод № 627, преобразованный затем во ВНИИЭМ.
В 1935 г. в ВЭИ разработана первая версия электропривода с преобразователем на тиратронах – прообраз широко распространенных сейчас регулируемых электроприводов по системе статический преобразователь-двигатель. С 1949 г. электроприводы с ртутными выпрямителями широко внедрялись в качестве главных приводов прокатных станов.
К 1948–1950 гг. относится появление отечественных вентильных каскадов на прокатных станах с введением в цепь ротора главного асинхронного двигателя управляемого ртутного выпрямителя.
В 40–50-е годы формируются научно-исследовательские и проектно-конструкторские организации, внесшие весомый вклад в развитие отечественного электропривода. Это ВЭИ (регулируемые электроприводы широкого применения), ГПИ «Тяжпромэлектропроект» (электрооборудование металлургических производств), Центральный научно-исследовательский институт технологии машиностроения – ЦНИИТмаш (электропривод станов холодной прокатки), трест «Электропривод», позднее ВНИИэлектропривод (электропривод текстильных агрегатов, бумагоделательных и полиграфических машин, скоростных лифтов, экскаваторов), ЭНИМС (электроприводы металлорежущих станков), ВНИИЭМ (прецизионные электроприводы) и другие организации. Практическая реализация электроприводов осуществлялась заводами «Электросила», ХЭМЗ, «Динамо», им. Я.М. Свердлова, им. С. Орджоникидзе и мн. др.
В середине 50-х годов сформировалась теория и практика «дополупроводникового» электропривода. Были созданы и получили широкое признание учебники по электроприводу С.А. Ринкевича «Теория электропривода» (1938 г.), А.Т. Голована «Электропривод» (1948 г.), Д.П. Морозова «Основы электропривода» (1950 г.), В.К. Попова «Основы электропривода» (1951 г.) и многие другие. Особенно следует отметить учебник М.Г. Чиликина «Общий курс электропривода», вышедший в 1953 г., выдержавший шесть изданий и внесший благодаря высокому уровню и доступности изложения весомый вклад в подготовку специалистов в СССР.
В США созданы основы современной теории электромеханического преобразования энергии на основе обобщенной машины, впоследствии широко использовавшиеся в практике разработки управляемого электропривода.
В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие сферы техники и, в частности, электропривод. В 1948 г. Дж. Бардин и В. Браттейн (Белловская лаборатория, США) создали первые транзисторы. В технику электропривода начали входить электронный управляемый ключ и, построенные на его основе, устройства.
Радикальное воздействие на технику электропривода оказал тиристор – мощный полууправляемый ключ, созданный в 1955 г. усилиями Дж. Молла, М. Танненбаума, Дж. Голдея и Н. Голоньяка (США). Появление тиристоров на тысячи вольт и большие токи при малых падениях напряжения в проводящем состоянии позволило полностью отказаться от громоздких, ненадежных и неэкономичных ртутных выпрямителей и тиратронов и перейти на управляемые тиристорные выпрямители в цепях электроприводов постоянного тока. Работы Ф. Блашке (ФРГ), опубликованные в начале 70-х годов, положили начало созданию систем асинхронного электропривода с ориентацией по магнитному полю с так называемым векторным управлением (система трансвектор).
В СССР получили развитие начатые еще в начале 40-х годов (А.А. Булгаков, М.П. Костенко) перспективные работы в области частотно-регулируемого электропривода. В трудах А.С. Сандлера и его учеников в 70-х годах нашли отражение вопросы построения преобразователей частоты с явно выраженным звеном постоянного тока на доступной в то время элементной базе – тиристорах, были сформулированы и детально исследованы принципы автоматического управления электропривода с преобразователями частоты.
В 60–70-е годы в МЭИ под руководством М.Г. Чиликина проведены интенсивные исследования и разработки дискретного электропривода с шаговыми двигателями (Б.А. Ивоботенко), широко внедренные в металлургической, станкостроительной и других отраслях промышленности, получившие признание технической общественности и заложившие основы дальнейшего развития новых типов регулируемого электропривода. В этот же период развивается электропривод с вентильными двигателями, в которых коллектор заменяется группой полупроводниковых ключей, коммутирующих обмотки и управляемых в функции положения ротора.
Наиболее плодотворной оказалась идея, предложенная еще в середине 50-х годов Кесслером (Германия) и состоящая в подчиненном регулировании координат электропривода с последовательной коррекцией. Во ВНИИЭлектроприводе в 60–70-е годы были созданы нашедшие широкое применение в промышленности комплексы средств управления электропривода — аналоговая ветвь УБСР-АИ и цифровая ветвь УБСР-ДИ.
Создание в США на границе 60—70-х годов четырехразрядного однокристального микропроцессора INTEL 4004 и программируемого логического контроллера (ПЛК) PDP 14 ознаменовало новую эру в сфере управления электропривода. Уже в 70-е годы в мировой практике эти технические средства начали интенсивно вытеснять использовавшиеся ранее контактные и бесконтактные реле; к 80-м годам схему управления на восьми и более реле стало экономически целесообразно заменять ПЛК.
По мере развития микропроцессорных средств управления и ПЛК изменялась информационная часть электропривода: резко, почти скачкообразно, наращивались функциональные возможности в управлении координатами, во взаимодействии нескольких систем между собой и с внешней средой, в детальной диагностике состояния и защите всех элементов привода от любых нежелательных воздействий.
Концептуальные изменения в развитие электропривода внесла новая элементная база силового канала в массовых устройствах – полностью управляемые ключи на токи до 600 А, напряжение до 1200 В с частотами 30 кГц и выше, появившиеся на рынке в последние 10–15 лет, и средства управления ими. Эти приборы, объединенные в модули с встроенными быстрыми обратными диодами и управляемые указанными выше современными средствами, послужили основой для построения преобразователей частоты со структурой неуправляемый выпрямитель – L—С-фильтр – автономный инвертор с широтно-импульсной модуляцией (ШИМ), ставших основным техническим решением в регулируемом электроприводе переменного тока мощностью до 600 кВт. В последние годы на рынке появились IGBT-модули на токи до 3600 А и напряжения до 6500 В.
Интенсивно осваиваются новые виды регулируемого электропривода – вентильно-индукторный, с другими нетрадиционными электрическими машинами. В микроприводе миниатюрных роботов применяются тонкопленочные диэлектрические двигатели.
В последние годы в мире отчетливо сформировалось и интенсивно реализуется тенденция перехода от нерегулируемого электропривода к регулируемому в массовых применениях: насосы, вентиляторы, конвейеры и т. п., благодаря чему резко повышается технологический уровень оборудования, экономятся значительные энергетические ресурсы.
История развития промышленного электропривода
Понятие и внутренняя структура электрического привода и его роль в реализации задач повышения производительности труда в разных отраслях народного хозяйства, автоматизации, механизации производственных процессов. История его создания и совершенствования.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 23.01.2015 |
Размер файла | 23,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
История развития промышленного электропривода
Электрический привод (ЭП) играет большую роль в реализации задач повышения производительности труда в разных отраслях народного хозяйства, автоматизации и комплексной механизации производственных процессов. Около 70% вырабатываемой электроэнергии преобразуется в механическую энергию электродвигателями (ЭД), которые приводят в движение различные станки и механизмы. Электропривод представляет собой электромеханическую систему, состоящую из электродвигательного, преобразовательного, передаточного и управляющего устройств, предназначенную для приведения в движение исполнительных органов рабочей машины и управления этим движением.
Современные автоматизированные электроприводы представляют собой сложные динамические системы, включающие в себя различные линейные и нелинейные элементы (двигатели, генераторы, усилители, полупроводниковых и другие элементы), обеспечивающие в своем взаимодействии разнообразные статические и динамические характеристики. Электропривод по системе Г-Д с тиристорным возбуждением генератора находит широкое применение во многих отраслях промышленности. Достаточно сказать, что большинство мощных электроприводов постоянного тока различного назначения выполнены по системе Г-Д. Это объясняется рядом ее важных преимуществ по сравнению с другими приводами;
— высокая жесткость механических характеристик;
— большой диапазон и плавность регулирования скорости;
— отсутствие пусковых сопротивлений и потерь энергии в них;
— простота реверса двигателя без переключений в цепи якоря;
— простота перевода привода в режимы торможения с рекуперацией энергии в сеть;
— относительная простота схемного решения системы управления приводом, не требующая высокой квалификации обслуживающего персонала. Наряду с перечисленными достоинствами система Г-Д не лишена существенных недостатков, к числу которых относятся:
— недостаточное быстродействие привода;
— неустойчивая работа двигателя в зоне низких скоростей, ограничивающая диапазон регулирования;
— низкий коэффициент полезного действия, не превышающий 75-80%;
— высокая установленная мощность, равная трехкратной мощности
1. Понятие электропривода
Согласно ГОСТ Р 50369-92 электрическим приводом называется электромеханическая система, состоящая в общем случае из взаимодействующих преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины
2. История создания электропривода
электрический производственный привод автоматизация
Появление ЭП обусловлено трудами многих отечественных и зарубежных ученых-электротехников. В этом блистательном ряду имена таких крупных ученых как датчанин Х. Эрстед, показавший возможность взаимодействия магнитного поля и проводника с током (1820 г.), француз А. Ампер, математически оформивший это взаимодействие в том же 1820 г., англичанин М. Фарадей, построивший в 1821 году экспериментальную установку, доказавшую возможность построения электродвигателя. (Рис. 1)
Отечественные ученые-академики Б.С. Якоби и Э.Х. Ленц, которым впервые удалось создать в 1834 году электродвигатель постоянного тока.
Работа Б.С. Якоби по созданию двигателя получила широкую мировую известность, и многие последующие работы в этой области были вариацией или развитием его идей, например, в 1837 году американец Девенпорт построил свой электродвигатель с более простым коммутатором. В 1838 г. Б.С. Якоби усовершенствовал конструкцию ЭД, привнеся в него практически все элементы современной электрической машины. Этот электродвигатель, мощностью в 1 л.с., был использован для привода лодки, которая с 12 пассажирами совершила движение со скоростью до 5 км/ч против течения Невы. Поэтому 1838 год считается годом рождения электропривода.
Еще в 1833 году академик Э.Х. Ленц открыл принцип обратимости электрических машин, объединивший впоследствии пути развития двигателей и генераторов. И вот в 1870 г. сотрудник французской фирмы «Альянс» З. Грамм создал промышленный тип электрического генератора постоянного тока, давший новый импульс в развитие электропривода и внедрению его в промышленность. Наш соотечественник электротехник В.Н. Чиколев (1845-1898) создает в 1879 году ЭП для дуговых ламп, электроприводы швейной машины (1882) и вентилятора (1886), отмеченные золотыми медалями на всероссийских выставках. Происходит внедрение ЭП постоянного тока в военно-морском флоте: подъемник боезапасов на броненосце «Сисой Великий» (1890-1894), первый рулевой привод на броненосце «12 Апостолов» (1992). В 1895 году А.В. Шубин разработал систему «инжектор-двигатель» для рулевого управления, установленный в дальнейшем на броненосцах «Князь Суворов», «Слава» и др.
Электропривод проникает в ткацкое производство на подмосковные текстильные фабрики Морозова, Лингардта, Прохоровскую мануфактуру, где уже к 1896 году работало значительное число двигателей постоянного тока.
В результате вышеперечисленных работ были устранены последние принципиальные технические препятствия к распространению электрической передачи энергии и был создан наиболее надежный, простой и дешевый электрический двигатель, пользующийся в настоящее время исключительным раcпространением. Более 50% всей электроэнергии преобразуется в механическую посредством самого массового электропривода на основе АД КЗ.
Первые в России 3-х фазные ЭП переменного тока были установлены в 1893 году в Шепетовке и на Коломенском заводе, где к 1895 году было установлено 209 электродвигателей общей мощностью 1507 кВт. И все же темпы внедрения электропривода в промышленность оставались низкими из-за отсталости России в области электротехнического производства (2,5% от мировой продукции) и выработки электроэнергии (15 место в мире) даже в пору расцвета царской России (1913).
3. Роль электропривода в народном хозяйстве
После победы Великой Октябрьской революции в 1920 г. был поставлен вопрос о коренной реорганизации всего народного хозяйства. Был разработан план ГОЭЛРО (государственный план электрификации России), предусматривающий в течение 10-15 лет создание 30 тепловых и гидроэлектростанций общей мощностью 1 млн. 750 тыс. кВт (к 1935 году было введено около 4,5 млн. кВт). Работая над планом ГОЭЛРО, В.И. Ленин отметил, что «электрический привод как раз наиболее надежно обеспечивает и любую быстроходность и автоматическую связанность операций на самом обширном поле труда».
Почему уделялось такое большое внимание электроприводу и электрификации? Дело очевидно в том, что ЭП является силовой основой выполнения механической работы и автоматизации производственных процессов с высоким КПД, при этом электропривод создает все условия для высокопроизводительного труда. Вот простой пример. Известно, что в течении рабочего дня один человек может при помощи мускульной энергии выработать около 1 кВт/ч, стоимость производства которой составляет (условно) 1 коп. В высоко электрифицированных отраслях промышленности установленная мощность электродвигателей на одного рабочего составляет 4-5 кВт (этот показатель называется электровооруженность труда). При восьмичасовом рабочем дне получаем потребление 32-40 кВт/ч. Это значит, что рабочий управляет механизмами, работа которых за смену эквивалентна работе 32-40 человек.
Именно поэтому было так важно обеспечить широкое внедрение электропривода в народное хозяйство. Количественно это характеризуется коэффициентом электрификации, равным отношению мощности электродвигателей к мощности всех установленных двигателей, в том числе и неэлектричеких. Динамику роста коэффициента электрификации в России можно проследить по (табл.)