основные понятия микробиологии история развития микробиологии
Микробиология
Предмет и задачи микробиологии. История развития микробиологии.
Предмет и задачи микробиологии состоят в изучении строения, физиологии м/о, распространения их в природе и роли в жизни человека.
Основные свойства м/о:
Очевидно, что эти организмы значительно легче выживают при неблагоприятных условиях окружающей среды.
1. Развитие микробиологии
Человек с древних времен начал использовать деятельность м/о, даже не подозревая об их существовании.
Еще в древние времена процессы брожения использовались при приготовлении теста.
В египетских пирамидах, построенных около 6000 лет назад, находили караваи хлеба.
В пирамидах Египта сохранились также рисунки, изображающие технологию приготовления вина. Около двух тысяч лет назад начало развиваться виноделие во Франции и других европейских странах.
Пиво изготавливали за 7000 лет до н.э. Технология его приготовления была высоко развита в Вавилоне, откуда искусство пивоварения было заимствовано Египтом, Персией, Грецией. В Германии пивоварением начали заниматься одновременно с земледелием. В XI-XII веках пиво готовили в Киевской и Новгородской Руси.
Уже в начале развития животноводства было известно приготовление кисломолочных продуктов.
Значительно позже научились получать этиловый спирт. Вначале его применяли только в медицине под названием «Aquata vitae»- вода жизни.
На заре своего развития человечество столкнулось и с результатами негативного воздействия микроорганизмов на продукты питания, здоровья человека и животных. Разрабатывались методы предотвращения порчи продуктов: сушка, замораживание, соление, квашение.
Во второй половине XV века наметилось зарождение современного естествознания. Большой вклад в изучение химизма брожения внес французский химик Лавуазье. Он почти точно количественно определил весовые пропорции водорода, углерода и кислорода в исходных и конечных продуктах брожения. Именно в этих работах была изложена основная идея закона сохранения энергии.
Свои линзы он называл микроскопиями и это были примитивные простые микроскопы (состояли из одной линзы, имели короткое фокусное расстояние, давали большое увеличение). В эти линзы он разглядывал насекомых, капельки крови, слюны, воды и т.д. И вот в 1676 году Левенгук впервые увидел микробов, изучая водные настои кореньев. Он назвал их «зверушками».
В 1698 году Петр I посетил Левенгука и привез в Россию микроскоп.
Каковы же открытия Пастера?
1. доказал микробиологическую природу всех процессов брожения; показал, что каждый химический тип брожения (спиртовое, молочнокислое и др.) сопровождается развитием микроорганизмов различного типа;
2. он обнаружил, что существуют микроорганизмы, которые могут жить только в отсутствие свободного кислорода (анаэробы);
3. изучал порчу пива и вина, вызываемую развитием нежелательных микроорганизмов (так называемые «болезни вина и пива»);
Многие рекомендации Пастера, в частности прогрев до температур, уничтожающих микроорганизмы, но не влияющих на качества продукта (впоследствии получившей название пастеризации), широко применяются и сейчас в винодельческой, молочной и других отраслях пищевой промышленности.
Крупной вехой в развитии микробиологии было получение чистых культур микроорганизмов. Значительный вклад в решение этой проблемы внес немецкий ученый Роберт Кох.
Для работы с чистыми культурами м/о необходимо было разработать аппаратуру для стерилизации посуды и питательных сред для культивирования м/о и определения технологии этого процесса. В разработку таких методов большой вклад внесли Л.Пастер, Р. Кох, Тиндаль, Шамберлен. Разработка методов чистых культур позволила создать технологию процесса, основанных на жизнедеятельности м/о и способствовала получению стабильных продуктов.
В познание химизма процессов брожения большое значение имело изучение ферментов осуществляющих этот процесс; в конце 19 в. немецкие ученые братья Бухнеры показали, что брожение может проходить в отсутствие живых клеток дрожжей, под действием экстрактов дрожжевых клеток. Они предполагали, что процесс брожения вызывается одним ферментом. Русский ученый Лебедев усовершенствовал способ получения дрожжевого экстракта и показал, что в процессе брожения участвует не один, а целый ряд ферментов. Так, было установлено, что причиной брожения могут быть как сами живые клетки, так и ферменты, образуемые клеткой.
Во время первой мировой войны военные потребности оказали влияние на появление ряда новых производств: глицерин, получаемый ранее из животных жиров, стали получать путем микробного синтеза из сахара и мелассы (отхода сахарного производства); ацетон, необходимый для производства взрывчатых веществ, стали получать путем микробиологического синтеза на основе кукурузной муки или сахара.
Перед промышленностью нашей страны стояла задача перехода от кустарных производств к крупным. Омелянский В.Л., Николаев В.А. исследовали пекарские дрожжи и разрабатывали научные основы брожения теста.
Работы Королева С.А., Войткевича А.Ф. по микробиологии молока и молочных продуктов способствовали развитию этой отрасли производства.
На основе исследований В.Н. Шапошникова и его сотрудников было разработано микробиологическое производство молочной и масляной кислот, а также ацетона и бутилового спирта.
Опыт промышленного производства антибиотиков привел к резкому повышению значения технических наук в микробиологической промышленности, а также к тому, что м/о начали использоваться в качестве продуцентов ряда веществ, которые ранее получали из растительного и животного сырья, а также для получения некоторых принципиально новых продуктов.
Важным достижением промышленной явилась разработка теории и практическое внедрение непрерывного культивирования м/о. Этому предшествовали: разработка математической основы теории этого процесса, изучение основ регуляции роста м/о, способов воздействия на их обмен веществ, создание аппаратуры для контроля параметров культивирования.
С возникновением генной инженерии появилась возможность направленно создавать для промышленности м/о с заданными свойствами.
Таким образом, несведущий в микробиологии видит практическое значение м/о в первую очередь во вреде, который они причиняют человеку, животным, растениям. Этими болезнетворными (патогенными) микроорганизмами и их специфическими особенностями занимаются такие науки, как медицинская и ветеринарная микробиология, а также фитопатия. Роль м/о как полезных организмов существенно преобладает.
Основные понятия микробиологии история развития микробиологии
1. Основные этапы развития микробиологии. Работы Л.Пастера, Р.Коха и их значение для развития микробиологии. Значение открытия Д.И.Ивановского. Роль отечественных ученых (Н.Ф.Гамалея, П.Ф.Здродовского, А.А.Смородинцева, М.П.Чумакова, З.В.Ермольевой, В.М.Жданова и др.) в развитии микробиологии.
Этапы развития микробиологии следующие: эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический.
ЭВРИСТИЧЕСКИЙ ПЕРИОД (IV III вв. до н.э. XVI в.) Гиппократ, римский писатель Варрон, Авиценна и др. высказывали предположения о природе заразных болезней, миазмах, мелких невидимых животных. Эти представления были сформулированы в стройную гипотезу спустя многие столетия в сочинениях итальянского врача Д. Фракасторо (1478 1553 гг.), высказавшего идею о живом контагии (contagium vivum), который вызывает болезни. При этом каждая болезнь вызывается своим контагием. Для предохранения от болезней им были рекомендованы изоляция больного, карантин, ношение масок, обработка предметов уксусом.
ФИЗИОЛОГИЧЕСКИЙ ПЕРИОД (ВТОРАЯ ПОЛОВИНА XIX в.) Открытие: клубеньковых бактерий, нитрифицирующих бактерий, возбудителей многих инфекционных болезней (сибирская язва, чума, столбняк, дифтерия, холера, туберкулез и др.), вируса табачной мозаики, вируса ящура. Изучение их строения, жизнедеятельности, изучение микроорганизмов, основанное на точном эксперименте.
Пастер изучал процессы брожения (1857) и самозарождения микробов (1860), болезни вина и пива (1865), шелковичных червей (1868). Он предложил вакцины против сибирской язвы (1881) и предохранительные прививки против бешенства (1885). Луи Пастер доказал, что если бульон достаточно длительно кипятить, а затем плотно закрыть, прекратив доступ в него воздуха, то микроорганизмы в бульоне не разовьются. Изучая процессы брожения (молочнокислого и маслянокислого), Пастер установил, что они вызываются микроорганизмами, обнаружил анаэробы. Прогревание вина и пива при 60—70°С убивало микробов, не портило вкуса и предохраняло от скисания. Вакцина против бешенства, полученная из мозга кролика, содержащего измененный, фиксированный вирус бешенства (virus fixe — постоянный, фиксированный яд), который в отличие от уличного (собачьего) вируса утратил свою вирулентность для животных и человека. Получить фиксированный вирус бешенства Пастеру удалось путем повторного многократного пассирования через мозг кролика уличного вируса больной собаки. Заложены основы вакцинопрофилактики.
Роберт Кох открыл и изучил возбудителей туберкулеза и холеры. Предложил способы окраски микроорганизмов, которые помогли изучить строение многих микробов, использовал при микроскопии освещение (осветитель Аббе), ввел микрофотографирование.
МОЛЕКУЛЯРНОГЕНЕТИЧЕСКИЙ ПЕРИОД (С 50х гг. ХХ в.)
1. Расшифровка молекулярной структуры и молекулярно биологической организации многих вирусов и бактерий; открытие простейших форм жизни «инфекционного» белка приона.
2. Расшифровка химического строения и химический синтез некоторых антигенов. Например, химический синтез лизоцима (Д. Села, 1971 г.), пептидов вируса СПИДа (Р.В. Петров, В.Т. Иванов и др.).
3. Расшифровка строения антител иммуноглобулинов (Д. Эдельман, Р. Портер, 1959 г.).
4. Разработка метода культур животных и растительных клеток и их выращивание в промышленных масштабах с целью получения вирусных антигенов.
5. Получение рекомбинантных бактерий и рекомбинантных вирусов.
6. Создание гибридом путем слияния иммунных В лимфоцитов продуцентов антител и раковых клеток с целью получения моноклональных антител (Д. Келлер, Ц. Мильштейн, 1975 г.).
7. Открытие иммуномодуляторов иммуноцитокининов (интерлейкины, интерфероны, миелопептиды и др.) эндогенных природных регуляторов иммунной системы и их использование для профилактики и лечения различных болезней.
8. Получение вакцин с помощью методов биотехнологии и приемов генетической инженерии (гепатита В, малярии, антигенов ВИЧ и других антигенов) и биологически активных пептидов (интерфероны, интерлейкины, ростовые факторы и др.).
9. Разработка синтетических вакцин на основе природных или синтетических антигенов и их фрагментов.
10. Открытие вирусов, вызывающих иммунодефициты.
11. Разработка принципиально новых способов диагностики инфекционных и неинфекционных болезней (иммуноферментный, радиоиммунный анализы, иммуноблотинг, гибридизация нуклеиновых кислот). Создание на основе этих способов тест-систем для индикации, идентификации микроорганизмов, диагностики инфекционных и неинфекционных болезней.
Ивановский – изучение мозаичной болезни табака, пришел к выводу, что эту болезнь вызывает агент, который не растет на питательных средах и проходит через фильтры.
Микробиология
Предмет и задачи микробиологии. История развития микробиологии.
Предмет и задачи микробиологии состоят в изучении строения, физиологии м/о, распространения их в природе и роли в жизни человека.
Основные свойства м/о:
Очевидно, что эти организмы значительно легче выживают при неблагоприятных условиях окружающей среды.
1. Развитие микробиологии
Человек с древних времен начал использовать деятельность м/о, даже не подозревая об их существовании.
Еще в древние времена процессы брожения использовались при приготовлении теста.
В египетских пирамидах, построенных около 6000 лет назад, находили караваи хлеба.
В пирамидах Египта сохранились также рисунки, изображающие технологию приготовления вина. Около двух тысяч лет назад начало развиваться виноделие во Франции и других европейских странах.
Пиво изготавливали за 7000 лет до н.э. Технология его приготовления была высоко развита в Вавилоне, откуда искусство пивоварения было заимствовано Египтом, Персией, Грецией. В Германии пивоварением начали заниматься одновременно с земледелием. В XI-XII веках пиво готовили в Киевской и Новгородской Руси.
Уже в начале развития животноводства было известно приготовление кисломолочных продуктов.
Значительно позже научились получать этиловый спирт. Вначале его применяли только в медицине под названием «Aquata vitae»- вода жизни.
На заре своего развития человечество столкнулось и с результатами негативного воздействия микроорганизмов на продукты питания, здоровья человека и животных. Разрабатывались методы предотвращения порчи продуктов: сушка, замораживание, соление, квашение.
Во второй половине XV века наметилось зарождение современного естествознания. Большой вклад в изучение химизма брожения внес французский химик Лавуазье. Он почти точно количественно определил весовые пропорции водорода, углерода и кислорода в исходных и конечных продуктах брожения. Именно в этих работах была изложена основная идея закона сохранения энергии.
Свои линзы он называл микроскопиями и это были примитивные простые микроскопы (состояли из одной линзы, имели короткое фокусное расстояние, давали большое увеличение). В эти линзы он разглядывал насекомых, капельки крови, слюны, воды и т.д. И вот в 1676 году Левенгук впервые увидел микробов, изучая водные настои кореньев. Он назвал их «зверушками».
В 1698 году Петр I посетил Левенгука и привез в Россию микроскоп.
Каковы же открытия Пастера?
1. доказал микробиологическую природу всех процессов брожения; показал, что каждый химический тип брожения (спиртовое, молочнокислое и др.) сопровождается развитием микроорганизмов различного типа;
2. он обнаружил, что существуют микроорганизмы, которые могут жить только в отсутствие свободного кислорода (анаэробы);
3. изучал порчу пива и вина, вызываемую развитием нежелательных микроорганизмов (так называемые «болезни вина и пива»);
Многие рекомендации Пастера, в частности прогрев до температур, уничтожающих микроорганизмы, но не влияющих на качества продукта (впоследствии получившей название пастеризации), широко применяются и сейчас в винодельческой, молочной и других отраслях пищевой промышленности.
Крупной вехой в развитии микробиологии было получение чистых культур микроорганизмов. Значительный вклад в решение этой проблемы внес немецкий ученый Роберт Кох.
Для работы с чистыми культурами м/о необходимо было разработать аппаратуру для стерилизации посуды и питательных сред для культивирования м/о и определения технологии этого процесса. В разработку таких методов большой вклад внесли Л.Пастер, Р. Кох, Тиндаль, Шамберлен. Разработка методов чистых культур позволила создать технологию процесса, основанных на жизнедеятельности м/о и способствовала получению стабильных продуктов.
В познание химизма процессов брожения большое значение имело изучение ферментов осуществляющих этот процесс; в конце 19 в. немецкие ученые братья Бухнеры показали, что брожение может проходить в отсутствие живых клеток дрожжей, под действием экстрактов дрожжевых клеток. Они предполагали, что процесс брожения вызывается одним ферментом. Русский ученый Лебедев усовершенствовал способ получения дрожжевого экстракта и показал, что в процессе брожения участвует не один, а целый ряд ферментов. Так, было установлено, что причиной брожения могут быть как сами живые клетки, так и ферменты, образуемые клеткой.
Во время первой мировой войны военные потребности оказали влияние на появление ряда новых производств: глицерин, получаемый ранее из животных жиров, стали получать путем микробного синтеза из сахара и мелассы (отхода сахарного производства); ацетон, необходимый для производства взрывчатых веществ, стали получать путем микробиологического синтеза на основе кукурузной муки или сахара.
Перед промышленностью нашей страны стояла задача перехода от кустарных производств к крупным. Омелянский В.Л., Николаев В.А. исследовали пекарские дрожжи и разрабатывали научные основы брожения теста.
Работы Королева С.А., Войткевича А.Ф. по микробиологии молока и молочных продуктов способствовали развитию этой отрасли производства.
На основе исследований В.Н. Шапошникова и его сотрудников было разработано микробиологическое производство молочной и масляной кислот, а также ацетона и бутилового спирта.
Опыт промышленного производства антибиотиков привел к резкому повышению значения технических наук в микробиологической промышленности, а также к тому, что м/о начали использоваться в качестве продуцентов ряда веществ, которые ранее получали из растительного и животного сырья, а также для получения некоторых принципиально новых продуктов.
Важным достижением промышленной явилась разработка теории и практическое внедрение непрерывного культивирования м/о. Этому предшествовали: разработка математической основы теории этого процесса, изучение основ регуляции роста м/о, способов воздействия на их обмен веществ, создание аппаратуры для контроля параметров культивирования.
С возникновением генной инженерии появилась возможность направленно создавать для промышленности м/о с заданными свойствами.
Таким образом, несведущий в микробиологии видит практическое значение м/о в первую очередь во вреде, который они причиняют человеку, животным, растениям. Этими болезнетворными (патогенными) микроорганизмами и их специфическими особенностями занимаются такие науки, как медицинская и ветеринарная микробиология, а также фитопатия. Роль м/о как полезных организмов существенно преобладает.
Естествознание.ру
Краткая история развития микробиологии
Главным препятствием для возможности изучения микроорганизмов являлось отсутствие оптических приборов, без помощи которых такое изучение было, разумеется, невозможно. Впервые удалось рассмотреть микробов с помощью лупы с увеличением в 40 раз Афанасию Кирхеру (1601-1680 гг.).
Более сильную лупу, дававшую увеличение уже в 160 раз, приготовил голландец Левенгук (1632-1723 гг.). Она впоследствии получила название «микроскопа Левенгука». С помощью этой лупы Левенгук впервые зарисовал основные формы бактерий, для изучения которых он брал налет с собственных зубов, загнившую дождевую воду, различные настои и т. п.
В течение почти двух столетий после этого, несмотря на усовершенствования в конструкции оптических приборов, изучение микробов не выходило, в сущности, за пределы изучения их форм и внешних явлений их жизни. Значение и роль микроорганизмов в природе в течение этого длительного периода оставались невыясненными, и наиболее выдающиеся представители естествознания становились здесь в тупик. Существование многочисленных групп микроорганизмов считалось обычно простой игрой природы. Знаменитый ботаник Линней (1707-1778 гг.) в своей системе, не зная куда отнести микробов, объединил их в особый род, которому дал название «хаос».
Только в 1786 г. Отто Мюллер делает первую, очень несовершенную попытку классификации микроорганизмов, в которой он не отделяет бактерий от других микробов, включая в их число и инфузории.
В 1838 г. Эренберг подразделяет бактерии на 3 семейства: спириллы, спирохеты и бактерии.
Новую эпоху в изучении микроорганизмов открыли работы Пастера. Пастеру впервые удалось показать, что эти ничтожные по своим размерам организмы вызывают разнообразнейшие биологические процессы, ведущие к глубокому изменению тех сред, в которых они развиваются.
Пастер вскрыл, наряду с природой брожений, причины появления заболеваний вина, пива, а в более поздний период своей жизни впервые установил причину возникновения инфекционных заболеваний и разработал способы культивирования патогенных бактерий. Наконец, ему принадлежит заслуга приготовления сибиреязвенной вакцины и прививок против бешенства.
С этого времени начинается быстрое развитие науки о микробах, которая носит название микробиологии. Совершенствуется методика выделения чистых культур микроорганизмов, без чего невозможно было их изучение. Благодаря введенному Р. Кохом (1843-1910 гг.) новому методу твердых питательных сред, которым мы и теперь пользуемся во всех работах по микробиологии, был сделан громадный шаг вперед в деле совершенствования методики выделения и изучения микробов. Этим был дан сильный толчок и для построения систематики микроорганизмов.
Микробиология
Разделы микробиологии: бактериология, микология, вирусология и т. д. В зависимости от экологических особенностей микроорганизмов, условий их обитания, сложившихся отношений с окружающей средой, и в зависимости от практических потребностей человека наука о микробах в своем развитии дифференцировалась на такие специальные дисциплины как общая микробиология, медицинская, промышленная (или техническая), космическая, геологическая, сельскохозяйственная и ветеринарная микробиология.
Содержание
История науки
За несколько тысяч лет до возникновения микробиологии как науки человек не зная о существовании микроорганизмов, широко применял природные процессы, связанные с брожением, для приготовления кумыса и других кисломолочных продуктов, получения алкоголя, уксуса, при мочке льна.
Донаучный этап развития
Люди издревне знали о многих процессах, вызываемых микроорганизмами, однако не знали истинных причин вызывающих эти явления. Отсутствие сведений о природе таких явлений не мешало делать наблюдения и даже использовать ряд этих процессов в быту. Ряд философов и естествоиспытателей делали умозрительные заключения о причинах тех или иных явлений. При этом наиболее близко к открытию микромира подошел Джироламо Фракасторо (1478—1553), предположивший что инфекции вызывают маленькие тельца, передающиеся при контакте и сохраняющиеся на вещах больного. Однако в то время невозможно было удостовериться в правильности его идей и распространение получили совершенно иные гипотезы.
Бактериальную природу инфекционных заболеваний многие учёные продолжали отвергать и после революционных открытий Пастера и Коха. Так, в 1892 году Макс Петтенкофер, уверенный в том что холеру вызывают миазмы, выделяемые окружающей средой, и пытаясь доказать свою правоту, проглотил при свидетелях-медиках культуру холерных вибрионов и не заболел.
Описательный этап
Возможность изучения микроорганизмов возникла лишь с развитием оптических приборов. Первый микроскоп был создан ещё в 1610 году Галилеем. В 1665 Роберт Гук впервые увидел растительные клетки. Однако 30 кратного увеличения его микроскопа не хватило чтобы увидеть простейших и тем более бактерии. По мнению В. Л. Омельянского «первым исследователем, перед изумлённым взором которого открылся мир микроорганизмов, был учёный иезуит Афанасий Кирхер (1601—1680), автор ряда сочинений астрологического характера», однако обычно первооткрывателем микромира называют Антони ван Левенгука.
В своём письме Лондонскому Королевскому обществу он сообщает как 24 апреля 1676 года микроскопировал каплю воды и даёт описание увиденных там существ, в том числе бактерий. Левенгук считал обнаруженных им микроскопических существ «очень маленькими животными» и приписывал им те же особенности строения и поведения, что и обычным животным. Повсеместное распространение этих «животных» стало сенсацией не только в научном мире. Левенгук демонстрировал свои опыты всем желающим, в 1698 году его даже посетил Пётр I.
Между тем, наука в целом ещё не была готова к пониманию роли микроорганизмов в природе. Система теорий возникла тогда лишь в физике. Во времена Левенгука отсутствовали представления о ключевых процессах живой природы, так, незадолго до него в 1648 году Ван Гельмонт, не имея никакого понятия о фотосинтезе, заключил из своего опыта с ивой, что растение берёт питание только из дистиллированной воды, которой он его поливал. Более того, даже неживая материя ещё не была достаточно изучена, состав атмосферы, необходимый для понимания того же фотосинтеза, будет определён лишь в 1766—1776 годах. Поэтому неудивительно что «животным» Левенгука не нашлось место нигде, кроме как в коллекции курьёзов.
В России одним из первых микробиологов был Л. С. Ценковский (1822—1887), описавший большое число простейших, водорослей и грибов и сделавший вывод об отсутствии резкой границы между растениями и животными. Им также была организована одна из первых Пастеровских станций и предложена вакцина против сибирской язвы.
Высказывались в это время и смелые гипотезы, например врач-эпидемиолог Д. С. Самойлович (1744—1801) был убеждён в том что болезни вызываются именно микроорганизмами, однако тщетно пытался увидеть в микроскоп возбудитель чумы — возможности оптики тогда ещё не позволяли это сделать. В 1827 итальянец А. Басси обнаружил передачу болезни шелковичного червя при переносе микроскопического гриба. Ж. Л. Л. Бюффон и А. Л. Лавуазье связывали брожение с дрожжами, однако общепринятой оставалась чисто химическая теория этого процесса, сформулированная в 1697 году Г. Э. Шталем. Для спиртового брожения, как для любой реакции, Лавуазье и Л. Ж. Гей-Люссаком были посчитаны стехиометрические соотношения. В 1830-х Ш. Каньяр де Латур, Ф. Кютцинг и Т. Шванн независимо друг от друга наблюдали обилие микроорганизмов в осадке и плёнке на поверхности бродящей жидкости и связали брожение с их развитием. Эти представление наткнулись, однако, на резкую критику со стороны таких видных химиков как Фридрих Вёлер, Йёнс Якоб Берцелиус и Юстус Либих. Последний даже написал анонимную статью «О разгаданной тайне спиртового брожения» (1839) — саркастическую пародию на микробиологические исследования тех лет.
Тем не менее, вопрос о причинах брожения, тесно связанный с вопросом о спонтанном самозарождении жизни, стал первым успешно решённым вопросом о роли микроорганизмов в природе.
Споры о самозарождении и брожении
Средние века были временем господства идей Аристотеля, что означало также и признание его теорий зарождения двоякодышащих рыб из ила, насекомых из экскрементов или капель росы на листьях. Первые эксперименты, опровергающие представления Аристотеля поставил тосканский придворный медик Франческо Реди (1626—1697). Общий его принцип — наблюдение за питательным веществом в открытом, куда возможно попадание живых организмов, и в каким-либо образом закрытом от них, но не от воздуха, сосуде — использовался во всех подобных опытах. Тогда было опровергнуто самозарождение насекомых, но уже в XVIII веке католический священник Джон Турбервилл Нидхем выдвинул гипотезу «жизненной силы», существующей в живых телах и вызывающей при их распаде возникновение микроорганизмов. Против него выступил Ладзаро Спалланцани, показав что нагревание препятствует появлению живых существ в настое растительных и животных волокон, закрытом в сосуде. Тогда Нидхем возразил что воздух, в котором имеют потребность живые существа, теряет свою «жизненную силу» при нагревании.
Франц Шульц после стерилизации сосуда с настоем пускал туда воздух, пропущенный через карболовую кислоту, и не наблюдал развития там микроорганизмов. Чтобы избежать возражений, что кислота тоже лишает воздух жизненной силы, Шрёдер и фон Душ в 1854 году пропускали воздух через хлопковый фильтр, а в 1860 Гофман и независимо от него в 1861 Шевре и Пастер показали, что нет необходимости и в фильтре — достаточно изогнуть соединяющие сосуд с атмосферой трубки, чтобы в нём после стерилизации не «зарождалась» жизнь. Так принцип omne vivum ex vivo (всё живое из живого) окончательно победил в биологии. Используя представления о невозможности самозарождения жизни, Луи Пастер в 1860-х показал что стерилизация делает брожение невозможным, таким образом было доказано участие в нём микроорганизмов. Кроме того, это стало открытием новой формы жизни — анаэробной, не требующей кислорода, а иногда даже гибнущей под его воздействием.
Золотой век микробиологии
1880-е и 1890-е ознаменовались для микробиологии всплеском числа открытий. Во многом это было связано с подробной разработкой методологии. Прежде всего здесь следует отметить вклад Роберта Коха, создавшем в конце 1870-х — начале 1880-х ряд новых методов и общих принципов ведения исследовательской работы. Пастер использовал для выращивания микроорганизмов жидкие среды, содержащие все элементы, находимые в живых организмах. Жидкие среды, однако, были недостаточно удобны. Так, сложно было выделить колонию, происходящую от одной живой клетки («чистая культура»), в связи с чем можно было изучать только обогащённые самой природой культуры. Лишь в 1883 Э. Христианом Гансеном была получена первая чистая культура дрожжей, полученная методом висячей капли. Твёрдые среды впервые использовались для изучения грибов, где необходимость чистых культур также была обоснована. Для бактерий твёрдые среды применял Кон во Вроцлаве зимой 1868/69 годов, однако только в 1881 Роберт Кох положил начало широкому применению желатиновых и агаровых пластинок. В 1887 году введены в практику чашки Петри. Коху принадлежат также знаменитые постулаты:
Эти принципы были приняты не только в медицине, но и в экологии для определения вызывающих те или иные процессы организмов. Также Кох ввёл в применение методы окраски бактерий (ранее использованные в ботанике) и микрофотографию. Публикации Коха содержали в себе методики, принятые микробиологами всего мира. Вслед за ним началось развитие и обогащение методологии, так в 1884 Ганс Христиан Грам использовал метод дифференцирующего окрашивания бактерий (Метод Грама), С. Н. Виноградский в 1891 применил первую элективную среду. За следующие годы было описано больше видов чем за все предыдущее время, выделены возбудители опаснейших заболеваний, обнаружены новые процессы, производимые бактериями и неизвестные в других царствах природы.
Инфекционные заболевания
В изучении жизнедеятельности микроорганизмов следует отметить вклад Луи Пастера (1822—1895). Он же вместе с Робертом Кохом (1843—1910) стоят в истоках учения о микроорганизмах как возбудителях заболеваний.
Экология микроорганизмов
Экологическую роль и многообразие микробиологических процессов показали Бейеринк (1851—1931) и С. Н. Виноградский (1856—1953).
Открытие вирусов
Изучение обмена веществ микроорганизмов
Техническая, или промышленная, микробиология
Техническая микробиология изучает микроорганизмы, используемые в производственных процессах с целью получения различных практически важных веществ: пищевых продуктов, этанола, глицерина, ацетона, органических кислот и др.
Огромный вклад в развитие микробиологии внесли русские и советские учёные: И. И. Мечников (1845—1916), Д. И. Ивановский (1863—1920), Н. Ф. Гамалея (1859—1949), Л. С. Ценковский, С. Н. Виноградский, В. Л. Омелянский, Д. К. Заболотный (1866—1929), В. С. Буткевич, С. П. Костычев, Н. Г. Холодный, В. Н. Шапошников, Н. А. Красильников, А. А. Ишменецкий и др.
Большая роль в развитии технической микробиологии принадлежит С. П. Костычеву, С. Л. Иванову и А. И. Лебедеву, которые изучили химизм процесса спиртового брожения, вызываемого дрожжами. На основании исследований химизма образования органических кислот мицелиальными грибами, проведённым В. Н. Костычевым и В. С. Буткевичем, в 1930 году в Ленинграде было организовано производство лимонной кислоты. На основе изучения закономерностей развития молочнокислых бактерий, осуществлённого В. Н. Шапошниковым и А. Я. Мантейфель, в начале 1920-х годов в СССР было организовано производство молочной кислоты, необходимой в медицине для лечения ослабленных и рахитичных детей. В. Н. Шапошников и его ученики разработали технологию получения ацетона и бутилового спирта с помощью бактерий, и в 1934 году в Грозном был пущен первый в СССР завод по выпуску этих растворителей. Труды Я. Я. Никитинского Ф. М. Чистякова положили начало развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Благодаря работам А. С. Королёва, А. Ф. Войткевича и их учеников значительное развитие получила микробиология молока и молочных продуктов.
Методы и цели микробиологии
К методам исследования любых микроорганизмов относят:
Цель медицинской микробиологии — глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.
Связь с другими науками
За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.