как делятся полимеры по отношению к нагреву

Как делятся полимеры по отношению к нагреву

Классифицируются полимеры по различным признакам: составу, форме макромолекул, полярности, отношению к нагреву и т.д.

1. По составу основной цепи

гомополимеры полимеры, построенные из одинаковых мономеров:

(целлюлоза, состоящая из остатков β-D-глюкозы);

— сополимеры — полимеры, цепочки молекул которых состоят из двух или более различных структурных звеньев:

(нуклеиновая кислота, гиалуроновая кислота, белки);

— блок-сополимеры, состоящие из нескольких полимерных блоков:как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву

Сополимеры получаются в результате реакций сополимеризации.

2. По строению главной цепи

гомоцепные

гетероцепные

Гомоцепные полимеры имеют главную цепь, состоящую из одинаковых атомов. Если она состоит из атомов углерода, то такие полимеры называют карбоцепными (полиэтилен, полистироли др.).

Гетероцепными называют такие полимеры, главная цепь которых состоит из различных атомов. К гетероцепным полимерам относятся простые эфиры, например, полиэтиленгликоль.

3. По регулярности строения цепи

— регулярные (стереорегулярные и стереонерегулярные) (присоединение мономерных звеньев по схеме «голова к хвосту» («головой» называется часть звена без заместителя, а «хвостом», соответственно, часть звена с заместителем);

нерегулярные (беспорядочное чередование мономеров различного химического состава).

Однако в большинстве случаев присоединение звеньев идет по типу «голова к хвосту» и при таком строении полимерная цепь довольно регулярна.

4. По форме макромолекулы

линейные;

разветвленные;

пространственные (сшитые)

Линейные и разветвленные цепи полимеров можно превратить в пространственные структуры «сшиванием» с помощью света, радиации или под действием химических реагентов.

5. По химическому составу

По химическому составу полимеры подразделяются на органические, элементоорганические и неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Органические полимеры в главной цепи кроме атомов углерода, могут содержать также и другие элементы — кислород, азот, серу и т.д. Органическими полимерами являются смолы и каучуки.

Элементоорганические соединения в природе не встречаются. Этот класс материалов полностью создан искусственно.

Элементоорганические полимеры содержат в основной цепи неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами (СН3, С6Н5, СН2). Эти радикалы придают материалу, прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. Представителями их являются кремнийорганические соединения.

Неорганические полимеры построены из атомов кремния, алюминия, германия, серы и др. и не содержат органические боковые радикалы. Неорганические полимеры являются основой керамики, стекол, ситаллов, слюдяных, асбестовых, углеграфитовых и других материалов.

6. По отношению к нагреванию

термопластические;

термореактивные

При нагревании термопластических полимеров их свойства постепенно изменяются и при достижении определенной температуры они переходят в вязкотекучее состояние. При охлаждении жидких термопластических полимеров наблюдаются обратные явления. Химическая природа полимера при этом не изменяется, процесс плавления и процесс отвердевания обратим.

К термопластическим полимерам относятся полиэтилен, полистирол, поливинилхлорид.

При нагревании термореактивных полимеров (реактопласты) они приобретают сетчатую структуру. Такие полимеры не восстанавливают свои свойства при нагревании и последующем охлаждении. Примером таких полимеров служат фенолформальдегидные смолы, мочевиноальдегидные, полиэфирные, эпоксидные и карбамидные смолы. Они содержат обычно различные наполнители.

как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву

7. По развитию деформации (при комнатных температурах)

пластомеры;

— эластомеры

Полимеры, которые легко деформируются при комнатной температуре, называют эластомерами, трудно деформируемые пластомерами (пластиками).

8. По природе (происхождению)

— природные;

— искусственные;

— синтетические

Полимеры, встречающиеся в природе – органические вещества растительного (хлопок, шелк, натуральный каучук, целлюлоза и др.) и животного (кожа, шерсть и др.) происхождения, а также минеральные вещества (слюда, асбест, естественный графит, природный алмаз, кварц и др.).

Искусственные полимеры получают из природных полимеров путем их химической модификации. Одним из наиболее распространенных природных полимеров, который непрерывно регенерируется в процессе фотосинтеза, является целлюлоза.

Нитроцеллюлоза и ацетатцеллюлоза – продукты химической модификации целлюлозы – искусственные полимеры. Они растворимы в ацетоне, хлороформе и др. растворителях.

Эфиры целлюлозы используют для получения фотопленки и волокон.

Вискозная нить получается растворением природной целлюлозы в сероуглероде со щелочью с последующим ее выделением. Вискозная нить и целлюлоза природная имеют различную кристаллическую структуру, пластмасса целлулоид получается обработкой нитроцеллюлозы камфарой в присутствии спирта.

Синтетические полимеры получают из простых веществ путем химического синтеза. Основным преимуществом синтетических полимеров перед природными являются неограниченные запасы исходного сырья и широкие возможности синтеза полимеров с заранее заданными свойствами. Исходным сырьем для получения синтетических полимеров являются продукты химической переработки нефти, природного газа и каменного угля.

как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву

9. По полярности

полярные;

неполярные

Неполярные не содержат полярных групп атомов — ПЭ (полиэтилен), ПП (полипропилен) и др.

Источник

ПО отношению к нагреванию

как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву

как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву

как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву

По отношению к нагреванию все полимеры делятся на термопластичные и термореактивные:

термопластичныетермоактивные
полиэтиленфенолформальдегидные смолы
полипропиленполиэфирные смолы
поливинилхлоридкарбамидные смолы
капрон

ПО Стереорегулярности

На свойства полимеров большое влияние оказывает регулярность, которая проявляется в строгой последовательности соединения исходных молекул мономеров в макромолекуле полимера.

Определение

Стереорегулярность особенно важна при использовании полимерных материалов в условиях многократных деформаций, так как обеспечивает эластичность, которая играет основную роль в обеспечении прочности и износоустойчивости изделий. Таким требованиям, например, должны отвечать искусственные каучуки, из которых изготавливают автомобильные шины. Как известно, натуральный каучук имеет стереорегулярное строение. В условиях химического синтеза добиться стереорегулярного строения долгое время не удавалось, и это отражалось на свойствах полимера. Но проблему удалось решить, когда были найдены катализаторы, обеспечивающие регулярную укладку мономерных звеньев в растущую полимерную цепь.

Группы —CH2— в макромолекулах дивинилового каучука должны быть расположены не беспорядочно, а по одну и ту же сторону двойной связи в каждом звене, то есть находиться в цис-положении:

как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву

Такое расположение групп —CH2— в макромолекуле способствует естественному скручиванию ее в спираль, что и обусловливает высокую эластичность. По стойкости к истиранию дивиниловый каучук даже превосходит натуральный.

По свойствам и применению

По свойствам и применению полимеры можно разделить на три типа:

Химические свойства полимеров

ВМС могут вступать в разнообразные химические реакции, которые подразделяются на следующие типы:

Реакции деструкции.

Определение

Иногда реакции деструкции проводят целенаправленно, например, в целях синтеза новых полимеров с меньшей степенью полимеризации. Окислительное расщепление натурального каучука озоном выявило наличие повторяющегося структурного фрагмента в этом полимере, и тем самым было установлено строение макромолекулы каучука:

Источник

Нагрев и деформация полимеров: поведение и физическое состояние пластмасс.

Практически все способы обработки пластика сводятся к вводу энергии, которая в итоге преобразуется в тепло, и прикладыванию определенного давления. Это касается даже процесса сваривания. Поэтому мы можем сделать следующий вывод:

Главными характеристиками, от которых будет зависеть способность полимеров к свариванию и переработке, являются их реакция на нагревание и деформирование.

В зависимости от реакции на термический нагрев все полимеры можно разделить на такие группы:

Термопластичные пластмассы или термопласты. Такие полимеры не изменяют свою структуру при повышении температуры и охлаждении. При нагреве термопласты размягчаются, но остаются химически неизменными. Это свойство термопластов позволяет их легко сваривать или создавать из них изделия различных форм.

Термореактивные пластмассы или реактопласты. Данный тип полимеров под воздействием высоких температур приобретают пространственную структуру и полностью утрачивают способность плавиться. Термореактивные пластики соединяют при помощи так называемой химической сварки.

Особенности подвижности макромолекул полимеров при нагреве

Нагрев пластиков ведет к преобразованию их состояния за счет того, что повышение температуры увеличивает запас средней тепловой энергии макромолекул полимеров, следовательно, подвижность макромолекул повышается. С характеристикой подвижности макромолекул у полимеров связаны определенные особенности, которые мы рассмотрим в данной статье.

Гибкость макромолекул пластика

Молекулы полимеров связаны друг с другом очень сильно, поэтому при нагревании макромолекулы не разъединяются полностью и не могут независимо друг от друга двигаться. Полный разрыв соединений макромолекул пластика по всей длине возможен только при воздействии такого количества энергии, которое больше энергии хим. связей основной цепи. Это значит, что оторвать молекулы полимера друг от друга возможно только при полной деструкции химических связей. Однако, на помощь для перемещения молекул приходит такое их свойство как гибкость макромолекул полимера.

Гибкость молекулы полимера обуславливается ее большой длиной, которая может быть больше поперечника в тысячи раз. Свойство макромолекулы изгибаться можно сравнить с гибкостью длинной нити. Также дополнительная гибкость обеспечивается деформированием валентных углов и увеличением при нагреве межчастичных расстояний. Вращение частиц макромолекулы вокруг простых химических связей без их разрыва требует значительно меньших энергозатрат. Данное вращение называют конформацией.

Из-за теплового движения отдельных звеньев макромолекул полимеров и благодаря их высокой гибкости, относительное перемещение молекул пластика происходит частями.

Гибкость макромолекул измеряется в величине ее частицы, которая при определенных условиях внешнего воздействия ведет себя как отдельная кинетическая единица и двигается независимо от других сегментов.

Чем больше молекулярная масса полимера, тем больше будет гибкость цепи, а увеличение молекулярных связей наоборот гибкость уменьшает. Если взять две молекулы полимера с равной молекулярной массой, то гибкость будет больше у той, у которой длина сегментов меньше.

Выделяют три состояния аморфных полимеров, которые обуславливаются свойством гибкости молекул:

Стеклообразное состояние. Или проще говоря застывшее. При низких температурах пластик полностью застывает и твердеет. В данном состоянии не наблюдается абсолютно никакой сегментарной подвижности, потому как в молекуле для этого не хватает тепловой энергии. Время пребывания в застывшем состоянии у пластика практически не ограничено.

Высокоэластичное состояние. Данное свойство наблюдается при повышении температуры. Сегменты начинают смещаться и макромолекулы становятся способны принимать различные конформации: от полностью свернутой до выпрямленной. При деформации в высокоэластичном состоянии молекулы полимера могут сильно удлиняться, а при застывании опять вернутся в исходное состояние.

Вязкотекучее состояние. Данное физическое состояние полимера возможно при значительном его нагревании. В данном случае пластик плавится и течет даже при небольшом на него воздействии. При этом состоянии активно двигаются не только сегменты, но и отдельные молекулы целиком.

При постепенном нагреве смена физического состояния полимера происходит в определенном диапазоне температурных значений, но за температуру перехода обычно берут среднюю температуру интервала. Такие переходы очень хорошо видны на термомеханических кривых (график зависимости деформации от температурных показателей).

На термомеханической кривой можно увидеть три участка кривой, которые соответствуют каждому из описанных выше состояний. Посмотреть термомеханическую кривую для аморфного пластика вы можете на иллюстрации ниже.

как делятся полимеры по отношению к нагреву. Смотреть фото как делятся полимеры по отношению к нагреву. Смотреть картинку как делятся полимеры по отношению к нагреву. Картинка про как делятся полимеры по отношению к нагреву. Фото как делятся полимеры по отношению к нагреву

Как видно на графике, на первом участке с низкой температурой показатель деформации совсем маленький. Тхр – это температура хрупкости полимера. Тс – это температура стеклования, при которой пластик переходит с высокоэластичного состояния в стеклообразное и обратно. После перехода из стеклобразного в высокоэластичное состояние идет так называемое переходное состояние, когда повышение температуры приводит к определенному уровню деформации, сохраняющемуся на всем интервале температур для высокоэластичного состояния. При вязкотекучем состоянии уровень деформации повышается очень резко. Граничная температура для состояний высокоэластичности и вязкотекучести называется Тт – температура текучести. Рост деформации продолжается до достижения температуры разложения полимера.

Термомеханические кривые для различных типов полимерных масс будет отличаться, их вид зависит от степени кристалличности полимера и от молекулярной массы. К примеру, при малых значениях молекулярной массы высокоэластичная область на термомеханической кривой будет практически отсутствовать, а для частично-кристаллических полимеров температура текучести будет выше температуры плавления.

Для переработки полимеров наиболее значимым является интервал температур между текучестью и разложением, ведь от него зависит, насколько чувствительным будет процесс переработки к изменению параметров режима.

Компания Полимернагрев специализируется на изготовлении нагревательных элементов для нагрева пластика для различного промышленного оборудования. У нас вы можете купить такие типы нагревательных элементов для переработки полимеров:

Если у вас остались вопросы по нагреву полимеров, пишите их в форме ниже или отправляйте нам на почтовый ящик, постараемся ответить на все в самые короткие сроки.

Источник

Классификация полимеров

Огромное число полимеров можно подразделить на три основных класса, лежащих в основе принятой сейчас классификации.

К первому классу относится обширная группа карбоцепных полимеров, макромолекулы которых имеют скелет, построенный из атомов углерода. Типичными представителями полимеров этого класса можно назвать полиэтилен, полипропилен, полиизобутилен, полиметилметакрилат, поливиниловый спирт и множество других. Фрагмент макромолекулы первого из них имеет следующее строение:
[-СН2-СН2-]n.

Ко второму классу относится не менее обширная группа гетероцепных полимеров, макромолекулы которых в основной цепи помимо атомов углерода содержат гетероатомы (например, кислород, азот, серу и др.). К полимерам этого класса относятся многочисленные простые и сложные полиэфиры, полиамиды, полиуретаны, природные белки и т.д., а также большая группа элементоорганических полимеров: полиэтиленоксид (простой полиэфир); полиэтилентерефталат (сложный полиэфир) полиамид; полидиметилсилоксан.

К этому же классу относится интересная группа хелатных полимеров, в состав которых входят различные элементы, способные к образованию координационных связей (они обычно обозначаются стрелками). Элементарное звено таких полимеров часто имеет сложное строение.

По способности к вторичной переработке полимеры подразделяются на термопласты и реактопласты. Рассмотрим первые подробнее. К термопластичным материалам или термопластам (thermoplast, thermoplastic) относятся полимеры, которые при нагревании в процессе переработки переходят из твердого агрегатного состояния в жидкое: высокоэластическое или вязкотекучее (литьевые термопласты переходят в вязкотекучее состояние). При охлаждении материала происходит обратный переход в твердое состояние. Поведение при нагревании отличает термопласты от термореактивных материалов или реактопластов (thermoset), которые отверждаются при переработке и не способны далее переходить в жидкое агрегатное состояние.

Физические состояния термопластов

В зависимости от температуры аморфные термопласты имеют 3 физических состояния: стеклообразное, высокоэластическое и вязкотекучее.

Для стеклообразного состояния характерны небольшие упругие деформации. Переход из высокоэластического состояния в стеклообразное происходит в некотором диапазоне температур, центр которого называют температурой стеклования Tc (glass transition temperature, Tg). В зависимости от метода определения температура стеклования может значительно изменяться. При повышении температуры стекловании повышается температура эксплуатации аморфного материала.

Полимер в высокоэластическом состоянии способен к большим обратимым деформациям, достигающим сотен и более %. При повышении температуры литьевой термопластичный материал переходит из высокоэластического состояния в вязкотекучее. Температура такого перехода называется температурой текучести Тт. Выше температуры текучести в полимере проявляются необратимые деформация вязкого течения. При нагревании аморфного материала обычно визуально наблюдается нефазовый переход, напоминающий процесс плавления для кристаллизующихся термопластов. Температуру такого перехода условно называют температурой плавления (melting temperature, Tm ) аморфного материала.

В кристаллизующихся термопластах аморфная фаза может приобретать описанные выше физические состояния. При нагревании кристаллическая фаза плавится. Температура этого фазового перехода называется температурой плавления Тпл (melting temperature, Tm). Свойства кристаллизующихся полимеров зависят от содержания кристаллической фазы и от того, в каком физическом состоянии (стеклообразном или высокоэластическом) находится при температуре эксплуатации аморфная фаза.

Классификация термопластов по эксплуатационным свойствам

Литьевые термопластичные материалы делят на несколько групп в зависимости от уровня эксплуатационных свойств. К таким свойствам прежде всего относится температура долговременной эксплуатации.

Пластмассы достаточно условно делят на группы (в различных изданиях приводятся разные критерии классификации):
— Материалы общего назначения или общетехнического назначения (general purpose plastics);
— Конструкционные пластмассы или пластмассы инженерно-технического назначения (engineering plastics);
— Суперконструкционные (super-engineering plastics) или высокотермостойкие полимеры (high temperature plastics).

Среди термопластов выделяют особую группу термопластичных эластомеров или термоэластопластов (TPE), которые по технологическим свойствам являются обычными термопластами, а по эксплуатационным подобны каучукам и резинам, т.е. способны к большим обратимым деформациям. В зависимости от температуры долговременной эксплуатации термоэластопласты также подразделяют на материалы общего назначения (general purpose TPE) и инженерно-технического назначения (engineering TPE).

Классификация термопластов по химической структуре

По химическому строению многочисленные литьевые термопластичные материалы обычно подразделяют на несколько групп (классов). Современная промышленность выпускает большое количество типов полиолефинов (PO), важнейшими из которых являются группы полиэтиленов (PE) и полипропиленов (PP). Многочисленные типы материалов представлены в группах стирольных пластиков (PS), полиамидов (PA), сложных полиэфиров (polyester).

Традиционно выделяют группы полимеров на основе целлюлозы (cellulosic plastics), фторполимеров или фторопластов (fluoro plastics). Изготовители акриловых полимеров или акрилатов (acrylic) часто указывают только принадлежность материала к данной группе и не приводят тип материала.

Классификация термопластов по объему производства

Нередко в литературе выделяют группу крупнотоннажных материалов (volume plastics), к которым относят полиэтилен (PE) и полипропилен (PP). основные стирольные пластики (PS) и особенно АБС (ABS), акрилаты (acrylic), ПВХ (PVC) и бутылочный ПЭТ (PET).

Гомополимеры. Сополимеры. Стереоизомеры

Развитие технологи синтеза полимеров с использованием металлоценовых катализаторов, позволило наладить в последние годы промышленный выпуск различных стереоизомеров.

В качестве примера влияния стереоизомерии на эксплуатационные свойства материала можно привести синдиотактический полистирол (SPS), являющийся кристаллизующимся материалом в отличие от обычного аморфного атактического полистирола.

По структуре сополимеры делят на несколько типов:

Помимо двойных сополимеров, построенных из двух типов мономерных звеньев, выпускаются тройные сополимеры (terpolymer), состоящие из трех типов звеньев, а также сополимеры с четырьмя и большим количеством типов звеньев. Тройными сополимерами являются АБС-пластики (ABS), ACA-сополимер (ASA) и др.

Классификация термопластов по типу наполнителя

Наполнители могут значительно изменять эксплуатационные и технологические свойства термопластов.

Термопласты, содержащие стекловолокно и др. виды стеклянных наполнителей, традиционно называют стеклопластиками (glass filled). В последние годы большое распространение получили материалы, наполненные длинным стекловолокном, требующие особых условий переработки.

Углепластиками (carbon filled) называют материалы, содержащие углеродное волокно.

Иногда выделяют группу «специальных» термопластов. К ним относят материалы, содержащие антипирены (материалы с повышенной стойкостью к горению), электропроводящие добавки (антистатические, электропроводящие, ЭМИ-экранирующие материалы), антифрикционные добавки (материалы с пониженным коэффициентом трения), добавки, придающие износостойкость и др.

Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *